Observation of v_e Appearance from a v_{μ} Beam and more

Chang Kee Jung • Stony Brook University

J-PARC PAC Meeting September 26, 2013

T2K Report to J-PARC PAC

Physics Potential and Sensitivities of T2K

The T2K Collaboration

September 2, 2013

Beyond Observation of ν_e appearance from a ν_{μ} beam

- Introduction, Summary of Data Taking and New (official) Results
 - ckj
- Future Sensitivity Study Report
 Megan Friend (KEK)
- Summary and Beam Request
 - Takashi Kobayashi (KEK)
- New "Work-in-Progress" Results
 - ckj, in closed session

J-PARC PAC Meeting, September 2013

T2K (E11) Physics Goals based on T2K LOI and J-PARC P11

- 1. Discovery of $v_{\mu} \rightarrow v_{e}$ appearance by extending the search down to $2\sin^{2} 2\theta_{\mu e} \sim \sin^{2} 2\theta_{13} = 0.006$, thereby probing that $\theta_{13} \neq 0$;
- 2. Precision measurement of oscillation parameters in the v_{μ} disappearance with precision of $\delta (\Delta m_{32}^2) \sim 10^{-4} \text{ eV}^2$ and $\delta (\sin^2 2\theta_{23}) \sim 0.01$ (~1% level); and
- 3. Search for sterile components in the v_u disappearance.
- → Approved data taking: 5 years (5 x 10⁷ s) @ 750 kW corresponding to 7.8 x 10²¹ POT with a 30 GeV beam
- T2K Report to J-PARC PAC provides a comprehensive status update of the experiment and present updated physics goals in light of the recent advancements

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Lepton Mixing Matrix (a la CKM matrix)

J-PARC PAC Meeting, September 2013

Chang Kee Jung

* Stony Brook University

3-flavor Neutrino Oscillations (in Vacuum)

In general,

$$P_{\alpha \to \beta} = \delta_{\alpha \beta} - 4 \sum_{i>j} \Re \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E} \right)$$

+
$$2 \sum_{i>j} \Im \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E} \right)$$

For three generation, v_e appearance (accelerator experiments)

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{\nu}} + \text{subleading terms}$ Sensitivity to θ_{23} octant

Full appearance probability includes term that goes as $sin(\delta)$:

CPV term $\propto \pm \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$

Sign flip for neutrino vs. antineutrino

Need non-zero value for all three mixing angles including θ_{13}

Complementary

Sensitivity to CPV- δ

For anti-v_e disappearance (reactor experiments)

 $P(v_e \rightarrow v_e) = 1 - 4C_{13}^2 S_{13}^2 \cdot (C_{12}^2 \sin^2 \Delta_{13} + S_{12}^2 \sin^2 \Delta_{23}) + 4S_{12}^2 C_{12}^2 C_{13}^4 \sin^2 \Delta_{12}$ No CPV-8 dependence, Pure θ_{13} measurement

J-PARC PAC Meeting, September 2013

TZ Full 3-flavor ν_μ Disappearance Probability (in Vacuum)

For a precision measurement, the next-to-leading term must be included in the fit due to the non-zero and relatively large θ₁₃

$$P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \sim 1 - \left(c_{13}^{4} \sin^{2} 2\theta_{23} + s_{23}^{2} \sin^{2} 2\theta_{13}\right) \sin^{2} \frac{\Delta m_{31}^{2} L}{4E}$$
Leading Next-to-leading non-zero

- The next-to-leading term contains $\sin^2\theta_{23}$ while the leading term contains $\sin^22\theta_{23}$
 - \rightarrow Natural to fit $\sin^2\theta_{23}$ not $\sin^22\theta_{23}$
- Oscillation maximum occurs at $\theta_{23} \sim 45.74^{\circ} \neq 45^{\circ}$ maximal mixing

is different between $1^{st}/2^{nd}$ octants

Current Status of Neutrino Oscillation Parameter Measurements

Critical for the ν -less double- β decay searches that would determine the Majorana-nature of ν

Known Mixing Angles

$$- \theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$$

$$- \theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$$

- $\theta_{23} = 45^{\circ} \pm 6^{\circ} (90\% \text{ C.L.})$ → largest uncertainty
- Remaining Unknowns
 - δ_{CP} (≠ 0, i.e. CPV?)
 - Mass ordering (NH or IH?)
 - θ_{23} > 45°, = 45° (maximal) or < 45°
 - maximal mixing may indicate a profound hidden symmetry
- T2K contributes to measurements of:
 - Δm^2_{32} , θ_{23} , θ_{13} , δ_{CP} and mass ordering

J-PARC PAC Meeting, September 2013

Running Status During Run 4 (Oct. 2012 ~ May 2013)

- T2K Physics runtime fraction was 82.6%
 - Accelerator trouble (11.2%), Accelerator tuning/study (1.3%)
 - NU trouble (3.0%), NU tuning/study (2.1%)
 - NU trouble was much smaller, compared to the previous runs
- Total delivered POT is 6.72×10^{20} (6.63×10^{20} for physics run)
 - Increase in this period (by May) is 3.62×10^{20} POT (very close to the expectation) Delivered POT per day

Chang Kee Jung

The T2K collaboration thanks the J-PARC accelerator division for their hard work to provide excellent accelerator performance

- Stable operation at ~220 kW achieved at the end of Run 4
 - World record proton per pulse (> 1.2×10^{14}) extracted for a synchrotron
- Total POT delivered: 6.72 (6.63 for physics run) x 10^{20} POT → ~ 8.6% of the total approved POT
 - Data analyzed for this presentation: 6.39×10^{20} POT (by April 12, 2013)

Strategy for predicting E_v and N_{SK} at the Far Detector A. Interaction of primary beam Neutrino-Nucleus interactions in a in the target [FLUKA2008.3d] few GeV region [NEUT] $\leftarrow \pi/K$ production v flux v cross section (Mainly CERN NA61 M₄ T2K replica target Magnetic Horn в arget Near detector π+, K+,... Decay volume constraints B. Tracking inside horns and He vessel [GEANT3+GCALOR] Based on vflux \otimes cross

Evaluate Neutrino flux and neutrino interaction model based on experimental data as much as possible

 $\Phi^{SK} \cdot P_{osc} \cdot \sigma^{H2O}_{reaction} \cdot \varepsilon_{SK} dE_{v}$

- Based on vflux (X) cross section MC models.
- Weighted by using as many of external data as input.
- Further constrain these predictions by the near detector measurements.

J-PARC PAC Meeting, September 2013

Chang Kee Jung

Prediction at

far detector

Stony Brook University

Results from the T2K v_{μ} disappearance Oscillation Analyses

- 2011 results based on Run 1 + 2 (1.43 x 10²⁰ POT)
 - 2 flavor oscillation analysis, fitting $sin^2 2\theta_{23}$ and Δm^2_{32}
 - Phys. Rev. D 85, 031103(R), 2012 (arXiv:1201.1386)
- 2012 results (PRL paper) based on Run1 3 data (3.01 x 10²⁰ POT)
 - Use event rate and E_{rec} spectrum (Same as before)
 - New analysis w/ spectrum constraint by ND280
 - 3 flavor oscillation analysis, still fitting $sin^2 2\theta_{23}$ and Δm^2_{32}
 - − Initially assumed $\theta_{23} \le 45^{\circ}$ (1st octant)
 - Found that fitting with the 2nd octant assumption results in significantly different allowed region contour
 - \rightarrow Two contours for both octant assumptions (for summer conferences)
 - Final results with fitting $\sin^2\theta_{23}$, NOT $\sin^22\theta_{23}$ (for PRL)
- 2013 results based on Run 1 4 data (6.39 x 10²⁰ POT)
 - 3 flavor oscillation analysis, fitting $\sin^2\theta_{23}$
 - On-going investigation of multi-nucleon knock-out processes

closed

session

Results from the T2K v_e Appearance Oscillation Analyses

- 2011 PRL based on Run 1 & 2 (1.43 x 10²⁰ POT)
 - 2.5 σ "Indication" of non-zero θ_{13} / v_e appearance
 - → This was really the first evidence of non-zero θ_{13} by a single measurement
 - Phys. Rev. Lett. 107, 041801 (2011) → 658 citations as of 9/21/2013
- 2013 PRD paper based on Run1 3 data (3.01 x 10²⁰ POT)
 - 3.1 σ "Evidence" of $_{\nu_e}$ appearance
 - New analysis w/ spectrum constraint by ND280
 - Phys. Rev. D88, 032002 (2013)
- 2013 results based on Run 1 4 data (6.39 x 10²⁰ POT)
 - Improved near detector constraint
 - Employ an advanced fitting procedure (fiTQun) to greatly reduce the pi-zero background
 - 7.5 σ "Observation" of ν_e appearance

v_e Candidate Events at SuperK Selection Criteria Summary

- (1) Event time within the T2K beam time window & Fully Contained (FC) Event
 (2) Event vertex in the Fiducial Volume (FV)
 → (1) & (2) (= FCFV events) Common for v_e and v_μ
 (3) Number of rings = 1 All cuts were
- (4) Electron-like PID
- (5) Visible energy > 100 MeV

All cuts were predetermined before looking at the data

- (6) No accompanying decay electron signal
- (7) Reconstructed energy (E_{rec}) < 1,250 MeV
- (8) π^{o} rejection (improved by employing new algorithm)

- New π^0 rejection cut
 - Employ fiTQun likelihood ratio of 1-ring electron and π^0 fits in addition to reconstructed mass
 - 70% reduction of π^0 background with comparable signal efficiency
 - Total background is reduced by 27%

Predicted Number of v_e Events and Systematic Uncertainties

Predicted # of events w/ 6.393×10²⁰ p.o.t.

Category	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
$\nu_{_{e}}$ signal	0.38	16.42
$\nu_{e} \text{BG}$	3.17	2.93
ν_{μ} BG	0.89	0.89
v_{μ} + v_{e} BG	0.20	0.19
Total	4.64 ± 0.52	20.44 ± 1.80

Systematic Uncertainties

Source	$\sin^2 2\theta_{13} = 0$	= 0.1
Flux + v int. (ND meas	.) 4.9 %	3.0 %
${f v}$ int. (from other exp.)	6.7 %	7.5 %
Super-K +FSI+SI+PN	7.3 %	3.5 %
Total	11.1 %	8.8 %
Total (2012)	13.0 %	9.9 %

 An excellent progress has been made in reducing systematic uncertainties

- T2K has now essentially achieved the original sys. error goal (~10% overall)
- Owing to the tremendous collective effort by:
 - NA61, Beam and ND280 groups
 - NIWG group
 - T2K-SK group
- However much more effort is needed to reach ~5% level sys. error which is needed to explore CPV

- Remove high energy intrinsic beam v_e backgrounds from kaon decays
- $(38 \rightarrow)$ 28 events (final)
 - Remove remaining π^0 background

Data Fit Results: Method 1 (p- θ)

J-PARC PAC Meeting, September 2013

Cross-section Measurements

- Various neutrino interaction cross-section measurement (including on water) opportunities at T2K
- Currently, the largest systematic uncertainty comes from the uncertainties in the cross-sections from other experimental input
- Officialized Results
 - Measurement of the Inclusive v_{μ} Charged-Current Cross Section on Carbon in the Near Detector of the T2K Experiment, Phys. Rev. D 87, 092003 (2013)
 - v_{μ} CCQE Cross-section Measurement Using ND280 Tracker
 - v_{μ} NC Elastic Cross-section Measurement Using ND280 P0D
- On-going Studies
 - ND280 Tracker: v_{μ} CC1 π^+ , v_{μ} CC-coherent π , v_e CC-inc, v_e CCQE
 - ND280 P0D: v_{μ} NC1 π^{0} , v_{e} CC-inc, v_{μ} CC-inc & CC1 π^{+} (on water)
 - INGRID: v_{μ} CC-inc & CCQE, v_{μ} CC-coherent π

Conclusions

- J-PARC accelerator has achieved steady operation at 220 kW for much of T2K Run 4
- We report a new T2K result on v_e appearance based on 6.39 x 10²⁰ pot (only ~8.6% exposure of T2K's design goal)
 - This is 2.1 times the Run 1-3 data used for 2012 analysis
 - 28 candidate events are observed compared to $4.6\pm0.5_{sys}$ expected for $sin^22\theta_{13} = 0$
 - An extended M.L. analysis utilizing both the number and *p*. θ of the events excludes $\theta_{13} = 0$ at the 7.5 σ level of significance ($\delta_{CP} = 0$, $\sin^2 2\theta_{23} = 1$)
 - Note: the result depends on the assumptions on other neutrino oscillation parameters, such as $\sin^2\!\theta_{23}$ and $\delta_{\rm CP}$
 - Substantial improvements in analysis have been achieved
 - This demonstrates the power and elegance of the off-axis beam technique

Chang Kee Jung

Stony Brook University

conclusion continues ...

- **"Observation of** v_e appearance from a v_{μ} beam" has now been made
 - The (original) primary physics goal of T2K has been now realized
 - This is the first time neutrino oscillation is observed in an "appearance mode", i.e. an explicit flavor appearance is observed from another neutrino flavor
 - This opens the door to study CPV in neutrinos
- Physics goals for the post non-zero θ_{13}/v_e appearance era are now clearly defined for T2K and the world neutrino oscillation community
 - Determination of δ_{CP} , mass hierarchy and θ_{23} (=0, <45, >45?)
 - T2K along with NOvA will lead the world in determining these parameters at least for the next decade
- Non-zero neutrino mass is an indication for physics beyond the Standard Model
- Nature kindly gave us the non-zero neutrino mixing angles and v_e appearance in order for us to be able to probe CP violation

J-PARC PAC Meeting, September 2013

Chang Kee Jung

* Stony Brook University

Supplemental Slides

J-PARC PAC Meeting, September 2013

Chang Kee Jung

* Stony Brook University

- POT normalized v event rate is very stable (<1%)</p>
- Beam direction is controlled well within the design requirement of 1 mrad (→ 2% shift in the peak energy of v spectrum)

J-PARC PAC Meeting, September 2013

T2K Data Taking at SuperK

- Very smooth data taking
 - Data taking efficiency ~ 99%

Well defined beam bunch structure

APFIT and fiTQun

- APFIT: sequential algorithm to reconstruct general event topologies at SK
 - Time-based vertex fit

Q, T

- Hough transform to identify Cherenkov rings
 - Select signal CCQE events with 1 ring
 - Reconstruct ring direction/energy with forward hits
 - e/µ particle identification with ring sharpness
- POLFIT: dedicated 2-ring fit to identify π^0 events

- fiTQun: new likelihood-based algorithm
- predictive model estimates Q/T at each PMT with 7 track parameters for each hypothesis $(e/\mu/\pi/p)$
- Simultaneously extract parameters with likelihood fit to observed Q/T at each PMT
- Multi-ring hypothesis built by superposing contribution from individual rings

x, y, z, t, θ, φ, p

Chang Kee Jung

Stony Brook University

fiTQun PID and n⁰ Reconstruction

fiTQun π⁰ fit

- Fitted likelihoods allow hypothesis tests
- Particle identification:
 - expected light profile from each hypothesis encoded in assumed Cherenkov profile
 - $e/\mu/\pi/p$ identification by comparing fit likelihood from each hypothesis
- Ring counting:
 - compare likelihood of (N+1) ring fit vs. N ring fit
- Reconstruct by identifying two rings from $\pi^0 \mathop{\longrightarrow} \gamma + \gamma$
 - 12 parameter fit hypothesis includes two conversion lengths (*s*₁, *s*₂)
- Previous algorithm:
 - 3 free parameter (2nd ring energy fraction and direction)
 - other parameters fixed from single ring fit
 - charge-only fit with simplified model for scattered light

Chang Kee Jung

X, V, Z,

S1

 $\theta_1, \varphi_{1, p_1}$

Far Detector v_e Candidate Event Selection: (1) Beam Timing & FC

 Clear beam bunch timing of J-PARC beam observed (GPS sync)

- 532 FC in-time events detected
 - 0.7 expected background events

Off-Timing FC Observed : 11 Expected BG: 5.8 p-value (>11) : 3.5%

Far Detector v_e Candidate Event Selection: (2) Within FV

J-PARC PAC Meeting, September 2013

Chang Kee Jung

Stony Brook University

Far Detector v_e Candidate Event Selection: (3) Single Ring & (4) Electron-like PID

Vertex Distribution of the Final v_e Sample

Entering BG events from interactions in OD is estimated to be:

0.03±0.009
 events

- O(0.1%) of FCFV v_e candidates

J-PARC PAC Meeting, September 2013

Chang Kee Jung

Stony Brook University

Effect of θ_{23} Uncertainty

