E16 Status & Plan as of 2013/9

Proposal title :

Electron pair spectrometer at the J-PARC 50 GeV PS to explore the chiral symmetry in QCD

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- physics motivation
- experiment
- progress in the detector development
- schedule
- summary

RIKEN	i <mark>tion</mark> S.Yokkaichi, Y. Aramaki, H. En'yo,		
	J. Kanaya, D. Ka		· · · · · · · · · · · · · · · · · · ·
	F. Sakuma, T.N		
KEK	K.Aoki, K.Ozawa, R. Muto,		
	· · · · · · · · · · · · · · · · · · ·	la, M. Sekimo	
U-Tokyo	Y.S. Watanabe, Y.Komatsu, S.Masumoto,		
-	K.Kanno, W.M	Jakai, Y. Obara	a, T.Shibukawa
	H.Murakami		
CNS, U-To	okyo H. Hamagaki	Kyoto-U M.	Naruki
Hiroshima	-U K. Shigaki	JASRI A.	Kiyomichi

J-PARC PAC 17th 2013Sep26 S.Yokkaichi

Mass and chiral symmetry in nuclear matter

- Origin of quark and hadron mass : spontaneous breaking of chiral symmetry
- In hot/dense matter, chiral symmetry is expected to the restored
- hadron spectral modification is also expected
- many theoretical and experimental approaches
- Hadron modification is observed in many experiments, but the origin is not determined
- NA60(SPS), PHENIX(RHIC) : ρ and/or low mass
- CLAS-g7(JLab) : ρ
- E325(KEK-PS) : ρ/ω , and ϕ
- best mass resolution and high statistics
- Next Step ...
- put an emphasis on $\phi\,$: not ambiguous like $\,\rho/\omega\,$

Dilepton spectrum measurements in the world

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (1010/spill) / 5 weeks of physics run to collect
- ~10⁵ $\phi \rightarrow e^+e^-$ for each target with an improved mass resolution, 5MeV.
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

J-PARC E16 experiment

- confirm the E325 results, and provide new information
 - check the interpretation model : explain the data for many nuclei, many velocity bins.
 - momentum dependence is compared with the QCD prediction.
 - 'mass shift' of ϕ is connected to the s-quark condensate in finite-density medium.

To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance : x~ 5
- Higher energy beam (12 \rightarrow 30/50 GeV) : x ~2 of production
- Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)
- to cope with the high rate, new detectors (GEM Tracker & HBD) are required. **Proposed Spectrometer** Plan View Prototype Module nuclear targets 5m beam LeadGlass alorimeter EM calorimeter return 30/50 GeV proton beam **GEM** Tracker herenkoy adiator Hadron blind electron identifier magnet pole piece GEM tracker Pad chamber 26 detector modules J-PARC PAC 17th 2013Sep26 S.Yokkaichi

<u>High-p line in the Hadron hall</u>

<u>High-p line in the Hadron hall</u>

<u>High-p line in the Hadron hall</u>

- budget requested by KEK to MEXT : finally funded
 - thanks to KEK staffs

Beam test results of prototype detectors (2012)¹⁰

GEM Tracker

HBD (Hadron-Blind Cherenkov detector)

Large size (300x300mm) PI- and LCP-GEM are successfully worked for a electron beam

- Stability and response for a pion beam should be checked at J-PARC.
- GEM Tracker is successfully worked.
- Improvement of the photo-detection efficiency of HBD is on going.

prototype to mass-production type

GEM Tracker

HBD (Hadron-Blind Cherenkov detector)

- Large size (300x300mm) PI- and LCP-GEM are successfully worked for a electron beam
- Stability for a pion beam is proved for the PI (50um) triple stack but LCP(100um) double stack
- GEM Tracker is successfully worked with a new preamp board.
- HBD optimization (gap size, pad size...) improves the pion-rejection factor.

Progress since 2012/1 (PAC-13)

- R/O electronics (Takahashi, Nakai, Kawama, Morino)
 - 1st version of preamp board for GEM detectors are tested w/ beam.
 - trigger modules from Belle-II (UT3, FTSW) test are on-going.
 - LG-FEM prototype is delivered.
 - SRS modules for GEM readout are proved to have enough performance for the data transfer.
- LG (Aramaki, Sekimoto)
 - All LGs are decomposed.
 - A few samples are tested with beam successfully.
- Spectrometer Magnet (Muto, Ozawa)
 - Additional parts (yokes,poles and a coil) are delivered.
 - Pit is dug in the High-p experimental area, where the magnet should be located.

Progress since 2012/1 (PAC-13)

- HBD (Aoki, Kanno)
 - improvement of # p.e. and measurement of the pion rejection factor
 - use the PI-GEM triple stack instead of LCP double stack
 - new configuration of GEMs and R/O pads are tested.
- GEM Tracker
 - 1st mass-production type of 100mm is successfully tested w/ beam
 - trigger signal from the 3rd foil / ASIC is designed (Obara)
 - 1st version of the support frame is delivered (Shibukawa)
 - mass-production type of 200mm and 300mm are tested in Lab. (Komatsu)
- GEM operation in the high-background environment (Kawama, Kanno)
 - The 300mm PI-GEM triple stack with CF4 is operated without any breakdown in 15 hours in the AVF cyclotron room at RIKEN. Observed rate of the background neutron (and gamma-ray) are 100-1000 times as large as that expected in the High-p experimental area.

GEM Tracker

- 1st production type (100x100mm)
- Support frame made by CFRP
- beam test at LEPS (2011) & J-PARC(2012) prototype is delivered in Mar.
- trigger signal from the 3rd GEM foil
- preamp board 1st version is used in the test

GEM Tracker : first prod. type is tested

HBD (Hadron Blind Detector)

- Threshold type Gas Cherenkov, using CF₄
- developed thanks to Weizmann/Stony Brook
- Ionized electrons are collected by mesh
- photoelectrons are amplified by 3 stages
- ionized electrons are amp. by only last 2 stages
 - \rightarrow can detect only particles with cherenkov photons.
- (1/100 of pion rejection)
- GEM : LCP t=100um double stack
- Csl evaporation by Hamamatsu & RIKEN
- QE improved at RIKEN
- 10 photoelectrons detected (cf. PHENIX ~20 p.e.) as of 2011
- Test @ J-PARC in 2012: w/ pion beam
 - pion rejection factor measured for the first time
 - stability for the hadron-beam environment

readout pad

managed by K. Aoki & K.Kanno

J-PARC PAC 17th 2013Sep26 S.Yokkaichi

HBD (Hadron Blind Detector)

- Test @ J-PARC K1.1BR in 2012/Jun (T43)
 - #p.e. improvement : $10 \rightarrow 13$
 - QE, gas purity and HV config. optimization
 - however, still less than that of PHENIX (20 p.e.)
 - 300mm LCP-GEM double stack was unstable in the hadron beam environment : breakdown in an hour
- Test @ J-PARC K1.1BR in 2013/Jan (T47)
 - 100mm/50mm PI-GEM triple stack were stable, even for CF_4
 - pion rejection is improved with a higher gain of new PI-GEM and smaller-size readout pad
 - measure the distributed charge

 \rightarrow pion rejection factor 100 with e-efficiency 70% achieved, same level as PHENIX, in spite of the less #p.e.

- Test using 300mm PI-GEM in 2013/June: canceled
 - stability is checked at RIKEN

Managed byK. Aoki & K.KannoJ-PARC PAC 17th2013Sep26S.Yokkaichi

HBD : New configuration

- gap length, gain, pad size...
- PI-GEM (t=50um), triple stack
- drift gap : 4mm to 1-2mm
- 1st gap : 1.5 mm to 1 mm : to reduce the ionization by pion
- 1st gap gain : 20 to 40 : to enhance the p.e. signal
- readout pad size : a=16mm → 10mm
- then we can expect
- pion rejection 40 or more at 80% electron efficiency at online
- pion rejection 400 or more at 70% electron efficiency at offline.
- required performance is almost achieved
 - move to mass-production in this year

readout pad

managed by K. Aoki & K.Kanno

J-PARC PAC 17th 2013Sep26 S.Yokkaichi

Schedule

- •2007: stage1 approval
- •2008-2011 : detector R&D

•JFY2012 :

- Test exp (T43/T47) at J-PARC
 - GEM stabilty and HBD response for pion beam
 - GEM R/O electronics
- •2013 Jan : High-p construction budget is approved
- •2013 Sep : start the mass production (GEM, tracker R/O board, etc.)
- •In the Hadron hall schedule table, we are assigned
 - 2014 Nov-2015 Jan : magnet reconstruction
 - 2015 Feb-Aug : detector installation in the magnet
 - 2016 Jan-Mar : detector commissioning w/ beam

- Investigation of the hadron spectral modification in the nuclear matter is a study of the nature of QCD vacuum and its excitation.
 - major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration.
 - Spectral modification of hadrons is observed in the hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra.
 - modification of narrow resonances are only observed by KEK-PS E325.
 - discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam.
 - confirm the observation by E325 and provide more precise information of the mass modification to clarify the chiral symmetry in the finite density matter.
 - preparation is underway with the Grant-in-Aid on Innovative Areas ("New hadrons").
 Detector mass-production is just started.
 - Staged Goal of construction : 8 modules out of 26, by Jan 2016.
 - TDR will be prepared by the next PAC to obtain the stage-2 approval.

J-PARC PAC 17th 2013Sep26 S.Yokkaichi

Readout electronics

~95000 ch (GTR 56000 + HBD 39000)

- APV25 chip and SRS are used for GEM readout
 - collaborating with CERN RD51

HBD (Hadron Blind Detector)

- Test @ J-PARC K1.1BR in 2013/Jan (T47)
 - pion rejection is improved with a higher gain of new PI-GEM and smaller-size readout pad
 - measure the distributed charge: selecting 3 fired pads or more

 \rightarrow pion rejection factor 100 with e-efficiency 70% achieved, same level as PHENIX, in spite of the less #p.e.

w/ and w/o cluster size analysis

Lead Glass from TOPAZ / E362

HIM

17 frames were decomposed at KEK warehouse by Y. Aramaki & S. Sekimoto

S.Yokkaichi

Lead Glass

4

1 1.5 2 2.5 3 3.5

Pion Momentum (GeV/c)

0 0.5 ٩Ļ

0.5 1

- Online
 - pion suppression down to 10% w/ the trigger threshold which keeps 90% of electron efficiency at 0.4GeV/c
 - Offline

1.5 2 2.5 3 3.5

Pion Momentum (GeV/c)

pion suppresion down to 5% (2%) at 0.4(1.0) GeV/c w/ 90% electron efficiency

Spectrometer Magnet

additional pole pieces

Detector R&D

- GEM Tracker to cope with the high rate
 - Ar+CO₂(70:30)
 - angled injection, 2D readout, etc.
 - required position resolution 100um is achieved for angled tracks w/ FADC R/O
- Hadron Blind Detector to trigger the electrons
 - CsI photocathode, CF₄ gas purity, etc.
- Domestic Large size (300mmx300mm) GEM
 - kapton (Polyimide, PI) t=50um for GT
 - LCP , t=100 um for HBD

Spectrometer Magnet re-construction

- FM magnet (used by KEK-PS E325)
 - additional poles and yokes
 - larger acceptance/stronger field
 - decompose -> proper location on the High-p line
 -> re-construction with new parts
 - a pit (digging of the floor concrete) is required under the magnet
 - takes 6-8 months
 - scheduling of the area and overhead crane usage

J-PARC PAC 17th 2013Sep26 S.Yokkaichi