Study of Light Hypernuclei by Pionic Decay at JLAB

Liguang Tang

Other spokespersons:
A. Margaryan, L. Yuan, S.N. Nakamura, J. Reinhold

Collaboration:
From both Hall C and A hypernuclear programs

NP08, Mito in Japan, March 5-7, 2008
The single and double hypernuclei are the main sources of the strange sector of baryon-baryon interaction.
Discovery of the first hypernucleus by pionic decay in emulsion produced by Cosmic Rays. Marian Danysz and Jerzy Pniewski, 1952

- $\Lambda \to p + \pi^-(64\%); \quad \Lambda \to n + \pi^0 (36\%)$
- Remain effective even at medium A
Access rich information about hypernuclear and nuclear physics

Used exclusively to determine the binding energy of light (A ≤ 15) hypernuclei in emulsion

- Precision: ~50 keV
- Resolution: ~0.5 – 1.0 MeV

Problems:
- Poor statistics
- Calibrations
- Cannot resolve pure 2-body decay

Was not interested in the past ~20 years – low energy and low yield

Λ → p + π⁻ (64%); Λ → n + π⁰ (36%)

Remain effective even at medium A
New Opportunity at JLAB

- Combination of the CEBAF beam and the HKS system → Spectrometer for π^-
- High precision and reasonable yield rate
- High mom. transfer → control background

Program features:

- Energy resolution: $\sigma \approx 55$ keV
- B_Λ precision: $\delta B_\Lambda \approx \pm 10$ keV
- Simultaneous lifetime measurement (Timing resolution: $\sigma \leq 80$ps)

- Wide range of physics
Directly Produced Hypernuclei - Example

Ground state doublet of $^{12}_\Lambda B$

B_Λ and τ

- $2^- \sim 150$ keV
- $1^- = 0.0$

Mesonic two body decay
Indirectly Produced Hypernuclei – Example

Fragmentation Process

Access to variety of light and exotic hypernuclei, some of which cannot be produced or measured precisely by other means.

Fragmentation ($<10^{-16}$s)

Mesonic two body decay ($\sim10^{-10}$s)
Physics Objectives – YN Interactions

- Emulsion data of light hypernuclei (primarily the ground states) were used to check theoretical models on YN interaction in the past 40 some years.

<table>
<thead>
<tr>
<th>YN</th>
<th>$B_\Lambda(^3\Lambda H)$</th>
<th>$B_\Lambda(^4\Lambda H)$</th>
<th>$B_\Lambda(^4\Lambda H^*)$</th>
<th>$B_\Lambda(^4\Lambda He)$</th>
<th>$B_\Lambda(^4\Lambda He^*)$</th>
<th>$B_\Lambda(^5\Lambda He)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC97d(S)</td>
<td>0.01</td>
<td>1.67</td>
<td>1.2</td>
<td>1.62</td>
<td>1.17</td>
<td>3.17</td>
</tr>
<tr>
<td>SC97e(S)</td>
<td>0.10</td>
<td>2.06</td>
<td>0.92</td>
<td>2.02</td>
<td>0.90</td>
<td>2.75</td>
</tr>
<tr>
<td>SC97f(S)</td>
<td>0.18</td>
<td>2.16</td>
<td>0.63</td>
<td>2.11</td>
<td>0.62</td>
<td>2.10</td>
</tr>
<tr>
<td>SC89(S)</td>
<td>0.37</td>
<td>2.55</td>
<td>Unbound</td>
<td>2.47</td>
<td>Unbound</td>
<td>0.35</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.13 ± 0.05</td>
<td>2.04 ± 0.04</td>
<td>1.00 ± 0.04</td>
<td>2.39 ± 0.03</td>
<td>1.24 ± 0.04</td>
<td>3.12 ± 0.02</td>
</tr>
</tbody>
</table>

- Problem of inconsistency and model of choice exist

- Recent γ-spectroscopy program has been successful for spin dependent interactions but unable to measure B_Λ

- Recent successful mass spectroscopy programs cannot reach a precision on B_Λ exceeding emulsion data
The wealth of information coming from this poor statistics emulsion experiment is solely attributable to the technique's inherent good energy resolution, \(~50\text{ keV}\) in this instance, and forcefully emphasizes the need to strive for comparable energy resolution in counter experiments.

- *D. Davis, 1992*

As it turns out, binding energies of light hypernuclei are highly correlated from calibrations to $^{12}_\Lambda C$ for example, and most likely incorrect.

- *D. Davis, HYP2006*
YN Interactions – cont.

- Replace emulsion data with a new set of data that has a factor of 2-5 times better precision on B_Λ to check current and future theories with stringent limits.

- Separate small ground state doublets.

- Study charge symmetry breaking in YN interaction, such as $B_\Lambda(^4\Lambda H_{g.s.}) - B_\Lambda(^4\Lambda He_{g.s.})$.
Search for Highly Exotic Hypernuclei

- Search for and measure precisely the B_Λ of the exotic hypernuclei is another effective way for exotic nuclear physics.

- Many hypernuclei with unstable nuclear core exist, e.g. $^6_\Lambda He$, $^7_\Lambda Be$, $^8_\Lambda He$, $^9_\Lambda Be$. Other exotic hypernuclei may exist, e.g. $^6_\Lambda H$, $^7_\Lambda H$, $^8_\Lambda H$, $^{10}_\Lambda He$, and $^{11}_\Lambda Li$ through fragmentation process.
Search for Highly Exotic Hypernuclei

- Search for light hypernuclei toward nucleon drip-lines: hypernuclei with extreme isospins

Hypernuclei at:
- β-stability line
- Neutron rich
- Nucleon drip-lines

Other programs:
- Heavy ion collision
- JINR, HypHI

This program – high precision on B_Λ
Impurity Nuclear Physics

Hypernuclear and nuclear structure

- Pion decays offer insights into the hypernuclear and nuclear structure, and the momentum dependence of the single particle wave functions.
Pion decays offer insights into the hypernuclear and nuclear structure, and the momentum dependence of the single particle wave functions.
Example: $^7\Lambda Li$ w/ g.s. doublet $1/2^+$ & $3/2^+$
Impurity Nuclear Physics – cont.

Probing nuclear structure with Λ

- Example: $^{10}_ΛB$ w/ g.s. doublet 1^- & 2^-
Example: $^{10}_\Lambda B$ w/ g.s. doublet 1^{-} & 2^{-}
- Spin order is not known
- γ transition ($2^{-} \rightarrow 1^{-}$) was not found
- Success competition by weak mesonic decay
- Assumed order could be wrong
- Decay pion may provide clarification
- $^{10}_\Lambda Be$ may be the candidate at JLAB
Impurity Nuclear Physics

Role and effect of Λ in Nucleus Medium

- Precise B_A allows separation of those low lying states which have sufficient long lifetime (i.e. γ decay competes with weak decay)

- Lifetime of these separable states allows to extract transition probabilities $B(E2)$ and $B(M1)$ which provide information about the medium effect to baryon or Λ to the core medium
Impurity Nuclear Physics

Role and effect of Λ in Nuclear Medium

Λ^7He

Λ^7Li

π^-

Λ^{11}B

Λ^{11}C

π^-

5/2$^+$ and 3/2$^+$ states are from unbound 2$^+$ state of 6He core
Tagged-Weak Pi-Method of B(E2) and B(M1) Measurement

If states can be separated and statistics is sufficient to measure lifetimes, then

By measuring both of $P^{B\rightarrow weak}(t)$ and $P^{A\rightarrow weak}(t)$ and fitting them together to the equations above, λ^A_W, λ^B_W, and m can be determined.
Technique & Exp. Layout

- Standard Splitter and HKS for K⁺
- Enge & target moved upstream for decay pions
- Tilted TGT (25mg/cm²) Eff. TGT (50mg/cm²)
- Standard pre-chicane beam line (E05-115)
- Local dump for photons
- Similar luminosity as E05-115 (HKS/HES)

Need calibration for the absolute \(\bar{H}πS \) central momentum
Parameters of the $H\pi S$ spectrometer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Enge Split-Pole (or HES) spectrometer and detector package</td>
</tr>
<tr>
<td>Central momentum</td>
<td>115 MeV/c</td>
</tr>
<tr>
<td>Momentum acceptance</td>
<td>± 40%</td>
</tr>
<tr>
<td>Momentum resolution (r.m.s.)</td>
<td>10^{-4} without multiple scattering</td>
</tr>
<tr>
<td>Momentum resolution (r.m.s.)</td>
<td>4.9×10^{-4} with multiple scattering</td>
</tr>
<tr>
<td>Dispersion</td>
<td>1.28 cm/%</td>
</tr>
<tr>
<td>Time-zero precision</td>
<td>< 100 ps (~80 ps)</td>
</tr>
<tr>
<td>Pion detection angle</td>
<td>~60 degree relative to the incident beam</td>
</tr>
<tr>
<td>Flight path length</td>
<td>309 cm</td>
</tr>
<tr>
<td>- survival rate</td>
<td>~ 60%</td>
</tr>
<tr>
<td>Solid angle</td>
<td>~20 msr</td>
</tr>
<tr>
<td>Total efficiency of the detector package</td>
<td>~80%</td>
</tr>
</tbody>
</table>
Example of Possible G.S. of Light Hypernuclei from 12C Target

- G.S. only (doublet structures are not shown)
- Estimated based on emulsion data thus may under-estimated for some of the hypernuclei
- Additional hypernuclei may appear
Example of Possible G.S. of Light Hypernuclei from ^{12}C Target

Background:
- $\sim 97.5\%$ QF Λ decay
- $\sim 2.5\%$ (K^+ & π^-) accidentals
Beam Parameters and Beam Time

- **Targets:** ^{12}C and ^{7}Li (Optimized combination)
 - ^{12}C – Heaviest in p-shell; reliable yield rates on variety of light hypernuclei but not too crowded
 - ^{7}Li – Best chance for the lightest and highly exotic hypernuclei, such as $^6\Lambda\text{H}$

- **Beam energy:** 1.8 – 2.2 GeV

- **Beam current and acq. time**
 - ^{12}C, 60μA (100 Max.), 20 days
 - ~1000 counts for $^4\Lambda\text{H}$ (physics w/ moderate yield)
 - ~6000 counts for $^5\Lambda\text{He}$ (physics and calibration)
 - ^{7}Li, 30μA (50 Max.), 20 days
 Primary: $^7\Lambda\text{He}$, $^6\Lambda\text{He}$, $^5\Lambda\text{He}$; Questionable: $^4\Lambda\text{He}$, $^6\Lambda\text{H}$, $^5\Lambda\text{H}$, $^4\Lambda\text{H}$

- **Trigger rate:** ~ few hundred Hz
CEBAF beam and HKS provide unique opportunity for a new counter type high precision decay pion program – *Producing data that replaces emulsion data in the role of checking theories*

- It can study a wide range of physics that either not accessible by other means or complementary to other programs
International Hypernuclear Network

PANDA at FAIR
- 2012~
- Anti-proton beam
- Double Λ-hypernuclei
- γ-ray spectroscopy

MAMI C
- 2007~
- Electro-production
- Single Λ-hypernuclei
- Λ-wavefunction

SPHERE at JINR
- Heavy ion beams
- Single Λ-hypernuclei

HypHI at GSI/FAIR
- Heavy ion beams
- Single Λ-hypernuclei at extreme isospins
- Magnetic moments

FINUDA at DAΦNE
- e^+e^- collider
- Stopped-K reaction
- Single Λ-hypernuclei
- γ-ray spectroscopy (2012~)

JLab, HπS
- Electro-production
- Single Λ-hypernuclei at normal and extreme isospins
- Binding energies
- $\pi^-\pi^+$ decay spectroscopy
- Impurity nuclear physics

JLab
- 2000~
- Electro-production
- Single Λ-hypernuclei
- Λ-wavefunction

J-PARC
- 2009~
- Intense K^- beam
- Single and double Λ-hypernuclei
- γ-ray spectroscopy for single

Basic map from Saito, HYP06