25-Sep.-2013 PAC17

Status report of E27 Pilot run analysis Tomofumi Nagae (Spokesperson of E27), Kyoto University

E27 Collaboration

• Y. Ichikawa, H.C. Bhang, S. Bufalino, H. Ekawa, P. Evtoukhovitch, A. Feliciello, H. Fujioka, S. Hasegawa, S. Hayakawa, R. Honda, K. Hosomi, K. Imai, S. Ishimoto, C.W. Joo, S. Kanatsuki, R. Kiuchi, T. Koike, H. Kumawat, Y. Matsumoto, K. Miwa, M. Moritsu, T. Nagae, M. Naruki, M. Miiiyama, Y. Nozawa, R. Ota, A. Sakaguchi, H. Sako, V. Samoilov, S. Sato, K. Shirotori, H. Sugimura, S. Suzuki, T. Takahashi, T.N. Takahashi, H. Tamura, T. Tanaka, K. Tanida, A.O. Tokiyasu, Z. Tsamalaidze, B.J. Roy, M. Ukai, T.O. Yamamoto, S.B. Yang

K-*pp*: experiments

- FINUDA; First evidence of K⁻pp
 - Back-to-back Λ-p pairs in Stopped K⁻ absorption on ^{6,7}Li+¹²C

• DISTO

- $pp \rightarrow K^+ + X @ Tp = 2.85 GeV$
 - X→Λp
 M_x=2267±3±5 MeV
 Γ_x=118±8±10 MeV

T. Yamazaki et al., PRL 104(2010) 132502.

K-pp: theoretical status

Methods	Binding Energy (MeV)	Width (MeV)
Shevchenko, Gal, Mares	50 - 70	~100
Ikeda and Sato Faddeev	60 - 95	45 - 80
Yamazaki and Akaishi Variational (ATMS)	48	61
Dote, Hyodo, Weise Variational (AMD)	20±3	40 - 70

K-pp should exist as a bound state.
Deep or Shallow ??
Width could be 40 - 100 MeV
A(1405)-p bound state ? (Arai, Oka, and Yasui) FSI effects ? (Magas, Oset, Ramos, Toki)

$d(\pi^+, K^+)$ reaction

Yamazaki & Akaishi, Phys. Rev. C76 (2007) 045201.

d(π⁺,K⁺) inclusive spectrum; in simulation

E27: Search for "K-pp" bound state in the d(π+,K+)X reaction "K-pp" is produced through Λ* doorway in the d(π+,K+) reaction

- Semi-exclusive measurement by Range Counter Array (RCA) in order
 to suppress quasi-free B.G.
 K-pp → Λ p₁, Λ → p₂ π⁻
 - $\mathsf{K}\text{-}\mathsf{pp} \rightarrow \Sigma^0 \, \mathsf{p}_1, \, \Sigma^0 \rightarrow (\Lambda \gamma) \rightarrow \mathsf{p}_2 \, \pi^- \, \gamma$
 - $\pi^+ d \rightarrow \Lambda^* \text{ K}^+ p_{1s}, \Lambda^* \rightarrow \Sigma \pi, \Sigma^+ \rightarrow p_2 \pi^0$
- Original Proposal: 5M/spill beam
 - 6x10⁴ Λ* /day

Assuming 1% trapping probability

- 600 bound states/day (inclusive)
- ~300 events/40 days (exclusive) with ε_{RCA}~14% for two protons

E27: Goal in a pilot run

• Inclusive $d(\pi^+, K^+)X$ spectrum @2.2 < Mx <2.5GeV/c².

• The first measurement of this reaction and this missing mass region.

 \rightarrow To evaluate the maximum value of the cross section, and to understand the background shapes.

• $p(\pi^+, K^+)X \rightarrow contribution of "p" in "d"$

Check the feasibility of coincidence measurement

- One proton tag/Two proton tag
- Data Taking in June, 2012 3M π⁺/spill
 Calibrations etc. ; 2 days
 p(π⁺,K⁺) @1.7 GeV/c ; 0.6 days
 d(π⁺,K⁺) @1.7 GeV/c ; 7.6 days

Range Counter System for E27

- 5 layers (1+2+2+5+2cm)
 - of plastic scinti.
- 39 122 degrees (L+R)
- 50 cm TOF

Particle Identification in Range Counter

Range Information

Spectrometer performance p(π⁺, K⁺)Σ⁺ @1.58 GeV/c [LH₂Target]

- ~ Energy Calibration & Cross section normalization
 - Resolution ; ΔM ~ 2.41MeV(FWHM)
 - Mean ; 1188.98 ± 0.03 MeV (PDG = 1189.37MeV)

p(π⁺,K⁺)1.7GeV/c ≥

- Σ^+ production
 - $\Delta M = 3.2 MeV(FWHM)$
 - Mass = 1188.92MeV
- Σ⁺(1385) production

$p(\pi^+,K^+)\Sigma^+$ @1.7GeV/c

d(π⁺, K⁺) @1.7GeV/c

d(π⁺, K⁺) @1.7GeV/c differential cross section

π^+ "n" \rightarrow K⁺ Λ at 1.7 GeV/c

d\sigma /d\Omega of Λ production

π^+ "n" $\rightarrow K^+\Sigma^0$ at 1.7 GeV/c

• $\pi^+ d \rightarrow \Sigma^{+/0} K^+ - \pi^+ p \rightarrow \Sigma^+ K^+$

d\sigma /d\Omega of Σ 0 production

Y* region; mass shift by ~30 MeV ??

d(γ,K⁺π⁻)Y* @1.5-2.4 GeV

• SPring-8 LEPS

• No mass shift for $\Sigma(1385)$

arXiv:1306.5320

Coincidence study

Pion Coincidence Rate

- R_{π} = (Pion coincidence spectrum)/(Inclusive spectrum)
 - $R_{\pi} \propto (\pi \text{ emission BR})x(\pi \text{ detection efficiency})$

Proton Coincidence Rate

Proton Coincidence in the middle of RCs RC: #3 #2 #1 #4 #5 #6 Better S/N

• "K-pp"-like structure ; 2.285 GeV/c², Γ~95 MeV

Same mass and width for "K-pp"-like structure

Two proton tagged spectrum

• Excess is observed at "K-pp"-like structure, but the coincidence rate is very low.

Summary

• We believe we have caught a signal of the "K-pp"-like structure in one-proton tagged spectrum.

"K-pp"-like structure

- Mass = 2.285 GeV/c² (~85 MeV binding from the K-pp threshold)
- S=-1, B=2(?, non-quasifree)
- Need careful studies on detector efficiencies to get final results.
- Inclusive (π^+, K^+) spectra are almost finalized.
 - For deuteron,
 - A cusp structure due to Σ^+ n- $\Lambda p({}^{3}S_1 {}^{3}D_1, I = 1/2)$ coupling is observed.
 - Significant mass shift by ~30 MeV is observed for Y*.