J-PARC 16th PAC meeting, Jan. 9, 2013, J-PARC, Japan

E36 progress report ---Measurement of $\Gamma(K^+ \rightarrow e^+\nu) / \Gamma(K^+ \rightarrow \mu^+\nu)$ ----

Suguru Shimizu Osaka University

J-PARC 16th PAC meeting, S.Shimizu

Outline

- Introduction to E36
- Funding efforts
- PID performance check at TRIUMF
- Progress of K⁺ target construction
- Engineering studies at K1.1BR
- Summary

15th PAC conclusion

14. <u>P36: (Measurement of Γ(K→ev)/ Γ(K→μv) and Search for heavy sterile neutrinos using the TREK detector system)</u>
 The PAC continues to endorse the physics case and stage-1 status and looks forward

to hearing a progress report on preparation and funding at the PAC meetings in 2013.

The IPNS directorate has awarded official STAGE-1 status for E36 after the 15th PAC recommendation.

Lepton universality in K₁₂ decay

Precise measurement of decay width ratio

• In the ratio of the $\Gamma(Ke2)$ to the $\Gamma(K\mu2)$, the hadronic form factors are cancelled out and R_{κ}^{SM} is highly precise.

$$R_{K}^{SM} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}} \right)^{2} (1 + \delta_{r}) \qquad R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$$

SM uncertainty is $\Delta R_{\kappa}/R_{\kappa} \sim 0.04\%$.

 Deviation of the experimental R_K from the SM prediction indicates lepton universality violation, which arises from New Physics.

Possible New Physics to violate µ-e universality

- Possible New Physics
 - ➢ MSSM w. R-parity violation
 - Pseudo-scalar interaction
 - ➤ Scalar w. loop correction

A.Abada et al., arXiv: 1211.3052

- ➤ MSSM w. LFV for Ke2
- Charged Higgs H⁺ mediated LFV SUSY
 - J. Girrbach and U. Nierste, arXiv:12020.4961
 - A. Masiero, P. Paradisi, and R. Petronzio, Phys. ReV. D74 (2006) 011701, JHEP 0811 (2008) 042
- Large effect, but strong constraints from $B_s \rightarrow \mu^+ \mu^-$ decay
- Recently, it was reported that R_K is sensitive to the neutrino mixing parameters within SM extensions involving a 4th generation of quarks and leptons or sterile neutrinos. H.Lacker and A.Menzel, JHEP 1007 (2010) 006

Experimental status of R_K

- KLOE @ DA Φ NE (in-flight decay) (2009) R_K = (2.493 ± 0.025 ± 0.019) × 10⁻⁵
- NA62 @ CERN-SPS (in-flight decay) (2012) $R_{\kappa} = (2.488 \pm 0.007 \pm 0.007) \times 10^{-5}$
- World average (2012) $R_{K} = (2.488 \pm 0.009) \times 10^{-5}, \delta R_{K}/R_{K} = 0.4\%$
 - These experiments: in-flight decay
- Systematics :
 - In-flight and stopped K⁺ experiments have very different systematic properties, so E36 is a complementary approach to NP.
 - > Thorough systematic error analysis: reported to PAC-13.
- E36 goal: $\delta R_{\kappa} / R_{\kappa} = \pm 0.2\%$ (stat) $\pm 0.15\%$ (syst) [0.25% total]

Experimental setup (newly made)

μ/e Identification

- In addition to the momentum spectrum separation between Ke2 and Kµ2, the µ/e identification is highly important for E36.
- In particular, the μ^+ mis-identification probability as an e⁺ is required to be smaller than 10⁻⁶ level.

- Particle identification by
 - Time of Flight (TOF)
 - Aerogel Cherenkov (AC)
 - Lead Glass (PGC)
- Efficiency calibration with the "sandwich method" using real K_{e2} data.

Element for check	Tracking elements	PID
AC	C1, C2, C3, C4	TOF \otimes PGC
TOF	C1, C2, C3, C4	$AC \otimes PGC$
PGC	C1, C2, C3, C4	TOF⊗AC

2

PID performance check at TRIUMF

- The first E36 PID study in Oct. 2012 at TRIUMF. The overall PID performance was checked with a 240 MeV/c beam by combining 3 PID detectors: TOF, AC, and PGC.
- AC: optimization of radiator and mirror by measuring e⁺ efficiency and mis-identification probability.
- PGC: performance check of TOPAZ Degrader thickness was optimized

Results of PID performance check: AC

• Final check and optimization with use of p=240MeV/c e⁺, μ^+

Results of AC performance test

Final check and optimization with use of p=240MeV/c e⁺, μ^+

Results of PGC performance test

 PGC will be assembled with 7 modules stacked in a radial direction.

We decided to re-use the TOPAZ Pb-glass counters as E36 PGC.

Estimation of PID performance

- Here, this is quick estimate just after the measurement.
- Mis-identification probabilities (P_{mis}) are obtained from the experimental data as,

 P_{mis} (AC) = 0.03

≻P_{mis} (PGC) = 0.04

 P_{mis} (TOF) is estimated from the Monte Carlo simulation using the timing resolution obtained by using cosmic rays as,

 P_{mis} (TOF) = 7x10⁻⁴

- The overall mis-identification probability is
 - ➢ P_{mis} (all) = P_{mis} (AC) x P_{mis} (PGC) x P_{mis} (TOF) = 8 x 10^{−7}, which is sufficiently good to perform E36.
- Correlation of the particle mis-identification between the 3 detectors has to be carefully checked using the experimental data. Detailed analysis is in progress.

Target construction at TRIUMF

(max 18 bars across)

0000

C

0

0

QQ

a a

0 0

Results of beam test

- Schedule of the construction (in 2013)
 - > The target assembly will be completed by July.
 - > A further beam test of the entire assembly in October.
 - Ship to J-PARC by December.

Engineering studies at J-PARC

- The K1.1BR beam tuning was successfully done in June 2012.
 Further tuning was performed in Dec. 2012.
- The K⁺ stopping efficiency was measured using BeO and Al degraders with a dummy K⁺ stopping target.
- The CsI(TI) single rate was checked for various degraders.
- The AC final model performance was checked with e⁺ and μ^+ beams.

Results of the K1.1BR beamline tuning

Slit condition	K ⁺ ∕spill [10 ³] @ 11 kW (Measurement)	Ι (Κ ⁺) [kHz] @ 30 kW at the E36 target position ^{*)}	K ∕π@±250 kV	K/π @±300 kV at the E36 target position ^{*)}
1	208	144	1.69	7.7
2	329	228	0.81	4.1
3	441	306	0.61	3.4
*) The E36				

- The K1.1BR beam tuning was successfully performed.
- The K⁺ intensity and K/π ratio were sufficient to carry out the E36 experiment.
 - The Au target is definitely necessary for E36.

2013/1/9

J-PARC 16th PAC meeting, S.Shimizu

Results of engineering studies at K1.1BR

- 1. Beam stopping measurements.
 - The optimum beam momentum was found to be 780 MeV/c.
 - We need to remove the beam halo using a collimator so that the existing E246 pre-amplifiers can accept the photon events.
 - Backgrounds and scattering from the degrader was measured in the CsI(TI) detector.

K⁺ momentum (MeV/c)

2. Aerogel Cherenkov counter performance test.

• The most promising radiator and reflector were tested – the data 2013/1/9 are now being analyzed RC 16th PAC meeting, S.Shimizu 18

CsI(TI) barrel check

• All the CsI(TI) modules (786) were checked using a ⁶⁰Co source.

- Measurement of energy spectrum
- Estimate of light yield
- Estimate of equivalent noise level (ENL)
- Almost all modules still have sufficient light yield.

• 3 broken modules (two were known in E246) and 2 with low light yield drop were found. Seemingly due to radiation damage after 5-year use in E246, the crystals nearest to the beam, have significantly low light yield.

CsI(TI) background event rate at K1.1BR

Beam halo is significant \succ Nature is analyzed, neutral or charged? 1000 counts/5spill) 900 > Necessity of a beam collimator 800 700 600 Scattering from degrader is significant 500 counts (x 10³ ➢Nature is analyzed 400 •neutral or charged? 300 200 • K^+ associated or π^+ associated 100 It is in the tolerable range 0 6

Distance from the beam axis(cm)

CsI (TI) readout performance test

New readout scheme for higher event rate at J-PARC

J-PARC 16th PAC meeting, S.Shimizu

Desired schedule and summary

	FY2012	FY2013	FY2014		FY2015	
Detector	R&D	Construction and setup				<u> </u>
Cryogenics		Re-installation				
Experiment (time window)				Run		
(in the case of funding delay)						Run

- Several categories of Grant-in-Aid Scientific Research Money (Kakenhi) were applied for in 2012. In Canada and the USA, additional equipment funding efforts are also underway.
- We are making progress in detector performance checks, e.g. of PID.
- The K1.1BR beam was proven to have sufficient quality for E36.
- It is desired and feasible to run E36 at K1.1BR in 2014-2015.
- If K1.1BR is further available with beam power > 100 kW, we would like to pursue E06 (T-violation).

2013/1/9

J-PARC 16th PAC meeting, S.Shimizu

TREK(E36/E06) collaboration JAPAN

University of Saskatchewan Department of Physics and Engineering University of British Columbia Department of Physics and Astronomy TRIUMF Universite de Montreal Laboratoire de Physique Nucleaire

USA

CANADA

University of South Carolina Department of Physics and Astronomy **Iowa State University** College of Liberal Arts & Sciences **Hampton University & Jefferson Laboratory** Department of Physics

RUSSIA

ZU13/1/9

Institute for Nuclear Research (INR)

Currently 44 collaborators

Osaka University Department of Physics **Tohoku University** *Research Center for Electron Photon Science (ELPH)* Tokyo Institute of Technology (TiTech) Department of Physics **Chiba University** Department of Physics University of Tokyo Department of Physics **Rikkyo University** Department of Physics High Energy Accel. Research Organization (KEK) Institute of Particle and Nuclear Studies

KOREA

Kyungpook National University Korea University

VIETNAM

University of Natural Sciences

23