T2K Physics Analysis Status and Sensitivity Update

* some of the pages are removed from slide for the web version

A.K.Ichikawa, Kyoto university for the T2K collaboration

Suggestive Mixing Matrixes

$$\begin{array}{l} {}^{\text{quarks}} \\ U_{CKM} \approx \begin{pmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix} \\ \delta = 60^{\circ} \end{array} \overset{\text{leptons}}{}^{\text{leptons}} \approx \begin{pmatrix} 0.8 & 0.55 & 0.15 \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix} \\ \delta = ? \end{array}$$

Example of prediction. Assuming some symmetry among quarks and leptons,

$$U_{CKM} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$U_{PMNS} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \\ \sqrt{1/6} & -\sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$
$$= \begin{pmatrix} 0.816 & 0.577 & 0 \\ -0.408 & 0.577 & 0.707 \\ 0.408 & -0.577 & 0.707 \end{pmatrix}$$

Can be a KEY to understand the origin of quark and lepton

Physics Analysis Status

v_e appearance

✓ PRL 107 (2011) 041801 (Run1+2 result) referred to > 455 times

- ✓ Result w/ Run1-3 (11events) was released at ICHEP2012 in August: 3.2σ
 - Full paper of this analysis is being prepared and will be submitted soon.
- ✓ Aiming to achieve ~5σ significance w/ data up to Summer 2013.
- ✓ Will update results in Summer

v_{μ} disappearance

New! w/ Run1-3 data (3.01x10²⁰POT)

- Update since July 2011(=1.4x10²⁰POT)
- Use event rate and E_{rec} spectrum (Same as before)
- New analysis w/ spectrum constraint by ND280
 - 2 independent analyses
 - Validation w/ RunI+II data and fake data

3.01x10 ²⁰ POT	Data	MC(*) Expectations w/ oscillation				
		MC total	ν_{μ} CCQE	ν_{μ} CC non-QE	ν_{e} CC	NC
FCFV	174	167	34	84	7.9	40
1-ring μ -like	66	68	32	32	0.04	3.5
p _µ >200MeV/c, Ndecay-e<=1	58	58	31	23	0.03	3.2
Efficiency[%]		20	69	21	0.4	2.4

 $sin^{2}2\theta_{23}=1.0,\Delta m_{32}^{2}=2.4x10^{-3}eV^{2}$

Systematic Errors

	ν_{e} sample	ν_μ sample
Flux & X-section	5.0% (22.6%)	4.1%(21.8%)
X-sec (non-cancel w/ ND280)	7.5%	6.2%
SK detector	3.0%	10.5%
Final-State and Secondary interactions	2.3%	3.5%
total	9.9%(24.2%)	13.2%(25.0%)

Reconstructed E_v spectrum of v_{μ} sample

9

Analysis completed and under internal review, now.

T2K sensitivity update (All plots are VERY preliminary and work in progress. Plan to show more complete results in Jun. PAC)

T2K sensitivity update

Precise measurement of $\sin^2 2\theta_{13}$ by reactor boosts the T2K sensitivity on CP- δ and θ_{23} octant degeneracy(*).

- $\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$
- $\theta_{23} = 45^{\circ} \pm 6^{\circ}$ (90%CL)
- $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$
- mass hierarchy: unknown

* v_{μ} disapp. is measuring sin²2 θ_{23} and cannot resolve θ_{23} <45° or θ_{23} >45°.

Max. 27% asymmetry by CP phase for θ_{23} =45°

$$P(\nu_{\mu} \rightarrow \nu_{\ell}) = 4C_{13}(S_{13}(S_{23}^{2})\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right) \qquad \text{Leading including matter effect} \\ + 8C_{13}(S_{12}S_{13}(S_{23})C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \qquad \text{CP conserving} \\ - 8C_{13}(C_{12}C_{23}S_{12}S_{13}S_{23})\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \qquad \text{CP violating} \\ + 4S_{12}(C_{13}(C_{12}C_{23}^{2}) + S_{12}(S_{23}^{2})S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} \qquad \text{Solar} \qquad 11 \\ - 8C_{13}(S_{13}(S_{23}^{2})(1 - 2S_{13}^{2}))\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} \qquad \text{Matter effect} \end{cases}$$

v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^{2}2\theta_{13}=0.1$, $\sin^{2}2\theta_{23}=1$ in vacuum

 v_{μ} to v_{e} oscillation probability at oscillation maximum $sin^2 2\theta_{13} = 0.1$, $sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 0.08 Normal Hierarchy 0.07 0.06 0.05 **Inverted Hierarchy** 0.04 0.03 0.02 0.01 -150 -100 -50 50 100 150 0 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 Lucky Spots 0.08 Normal Hierarchy Large Chance to find CP 0.07 violation and to resolve MH. 0.06 0.05 **Inverted Hierarchy** 0.04 0.03 0.02 0.01 -150 -100 -50 50 100 150 0 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 0.08 Normal Hierarchy 0.07 0.06 0.05 **Inverted Hierarchy** 0.04 T2K (rough) full stat. error+/-1 σ 0.03 0.02 0.01 -150 -100 -50 50 100 150 0 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 0.08 Normal Hierarchy 0.07 0.06 0.05 **Inverted Hierarchy** 0.04 T2K (rough) full stat. error+/-1 σ 0.03 $CP \delta$ 0.02 allowed region 0.01 50 -150 -100 -50 0 100 150 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 Normal Hierarchy 0.08 0.07 0.06 0.05 T2K (rough) full stat. error+/-1σັ 0.04 0.03 **Inverted Hierarchy** 0.02 0.01 -150 -100 -50 50 100 150 0 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 Normal Hierarchy 0.08 0.07 0.06 0.05 T2K (rough) full stat. error+/-1o 0.04 0.03 **Inverted Hierarchy** 0.02 $CP \delta$ allowed region 0.01 -150 -100 -50 0 50 100 150 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $sin^2 2\theta_{13} = 0.1$, $sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 Normal Hierarchy Dotted : NOvA 0.08 0.07 0.06 0.05 [2K (rough) full stat. error+/-1o 0.04 0.03 **Inverted Hierarchy** 0.02 $CP \delta$ allowed region 0.01 -150 -100 -50 50 100 150 0 CP δ (deg)

 v_{μ} to v_{e} oscillation probability at oscillation maximum $\sin^2 2\theta_{13} = 0.1$, $\sin^2 2\theta_{23} = 1$, w/ matter effect $P(v_{\mu} \rightarrow v_{e})$ 0.09 Normal Hierarchy Dotted : NOvA 0.08 0.07 NOvA Allowed region 0.06 0.05 T2K (rough) full stat. error+/-1o 0.04 0.03 **Inverted Hierarchy** 0.02 $CP \delta$ allowed region 0.01 -100 -150 -50 50 100 150 0 CP δ (deg)

Actually, w/ θ_{23} uncertainty

T2K sensitivity @7.8E21 POT(750kW x 5e7sec @ 30GeV)

- Combined 3 Flavor Appearance and Disappearance Fit
- \checkmark Reconstructed E_{ν} spectrum for ν_{e} and ν_{μ} samples
- ✓ w/ and w/o reactor results
 - sin²2θ₁₃=0.1±0.005: marginalize by error(=reactor sys. error)
- ✓ w/ and w/o current systematic error
 - Full covariance matrix on reconstructed E_v spectrum
 - Assume same error for anti-v mode. +10% overall normalization error.
- ✓ Uncertainties for other oscillation parameters are taken into account
 - e.g. δ .vs.sin²2 θ_{13} plot is made by marginalizing the effect from θ_{23} and Δm_{32}^2 uncertainties.
 - Results w/ normal mass hierarchy case. Sensitivities w/ two assumptions (NH and IH): MH unknown in analysis.

Many combinations of v-mode:anti-v mode running ratio

Case Study

T2K full sensitivity Expected 90% C.L. allowed region

 δ_{CP} =0, sin²2 θ_{23} =1.0 Normal Hierarchy Allowed region assuming NH or IH Solid : w/ current systematic error Dashed : w/o systematic error

25

Running fraction

T2K full sensitivity Expected 90% C.L. allowed region

 $δ_{CP}$ =-90, sin²2 $θ_{23}$ =1.0 Normal Hierarchy Allowed region assuming NH or IH Solid : w/ current systematic error Dashed : w/o systematic error

26

Running fraction

Comparison/Combination w/NOvA

- Baseline length 810 km (c.f. T2K 295km)
- Detector Mass 15kT
- 3.6x10²¹ POT in 6 years.
- (Start in May 2013 w/ partial detector)
- No systematic error for comparison/combination
- GLoBES (General Long Baseline Experiment Simulator) is used
 - Use the flux and cross sections in GLoBES (Mostly consistent w/ numbers in NOvA TDR)

	# signal events	# bkg events	
v mode	60.4	10.2	
anti-v mode	25.9	11.1	

c.f. T2K (v:anti-v=50%:50% case) v mode 106 signal events, 39 bkg. events anti-v mode 24 signal events, 22 bkg events (5.6 from $v_{\mu} \rightarrow v_{e}$)

POT dependence

Precision(1σ)

v mode: anti-v mode=100%:0%

Precision on $P(v_{\mu} \rightarrow v_{e})$

Effective 2 flavor mixing angle for $P(v_{\mu} \rightarrow v_{e})$ (obtained by fixing other oscillation parameters than θ_{13}) Black: δ =0deg Red: δ =90deg

Dashed : w/o sys. Error Solid : w/ current sys.error MH is fixed to NH(true)

 $sin^2 2\theta_{13}$

0.035 σ width $sin^2 2\theta_{\mu e}$ 0.03 Work in progress 0.025 $sin^2 2\theta_{\mu e}$ 0.02 w/ present sys. errr 0.015 w/o sys. errr 0.01 0.005^L0 5 8 10 9 6 $\times 10^{21} \, \mathrm{POT}$

Due to the uncertainty of δ , θ_{23} and Δm_{32}^2 , precision is worse than sin²2 $\theta_{\mu e}$

Summary (1 page before last slide)

- v_e appearance
 - Next update in Summer. (~5σ significance w/ 8x10^20 POT)
- v_{μ} disappearance
 - (almost) starting to break the world records
- Systematic errors
 - Still << statistical
 - Much room for reduction -- T2K will keep sys. errors smaller than stat. errors
 - Flux : more NA61 data
 - ND280 : new category of samples.
 - v interaction : understanding of nuclear models.
 - SK : detection efficiency error, more pi0 rejection by new fitter
- Future sensitivity
 - Possibility of first measurement of CP δ
 - T2K has sensitivities for non-maximal $\theta_{\rm 23}$ and octant, CP violation.
 - The sensitivities would be increased w/ NOvA , SK and reactor experiments.
 - v-mode:anti-v-mode running time will be optimized.
- Other physics analyses
 - Cross section measurements, vTOF, Sterile neutrino and so on.