E17 Status Report

K⁻-³He 3d→2p x-rays

Ryugo S. Hayano, Tokyo

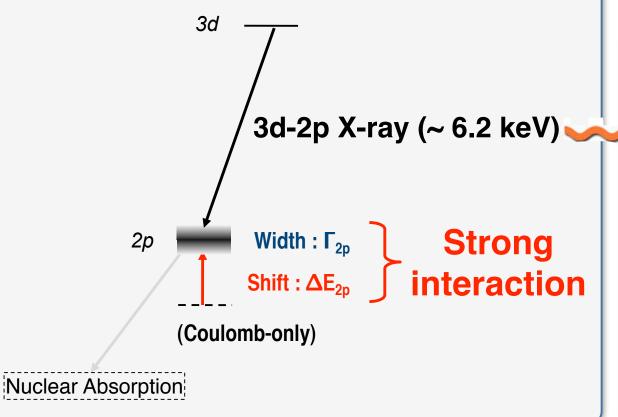
for J-PARC E17 Collaboration

J-PARC E17 collaboration

H. Bhang¹, M. Cargnelli², S. Choi¹, C. Curceanu³, O. V. Doce³, S. Enomoto⁴, H. Fujioka⁵, Y. Fujiwara⁶, C. Guaraldo³, T. Hashimoto⁶, R. S. Hayano⁶, T. Hiraiwa⁵, M. Iio⁷, S. Ishimoto⁸, T. Ishiwatari², K. Itahashi⁷, M. Iwasaki^{7,9}, H.Kou⁹, P. Kienle^{2,10}, J. Marton², Y. Matsuda⁶, H. Noumi⁴, H. Ohnishi⁷, S. Okada³, H. Outa⁷, F. Sakuma⁷, Y. Sada⁵, M. Sato⁶, M. Sekimoto⁸, H. Shi⁶, D. Sirghi³, F. Sirghi³, T. Suzuki⁶, K. Tanida¹, H. Tatsuno⁶,

M. Tokuda⁹, D. Tomono⁷, A. Toyoda⁸, K. Tsukada⁷, A. R. Vidal³,

E. Widmann², B. Wunschek², T. Yamazaki^{6, 7}, J. Zmeskal²


SNU¹, SMI², LNF³, RCNP⁴, Kyoto Univ.⁵, Univ. of Tokyo⁶, RIKEN⁷, KEK/J-PARC⁸, Tokyo Tech⁹, Tech. Munich Univ.¹⁰

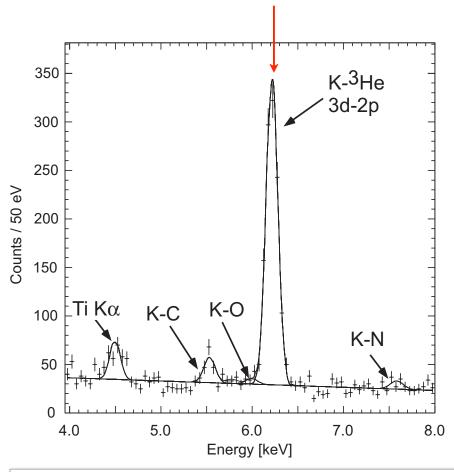
Following the 14th J-PARC PAC decision, we have allocated all the available resources (¥ & manpower) to E15.

E17 : K⁻-³He 3d → 2p x-rays

related closely to E15 and other experiments studying "deeply-bound kaonic systems"

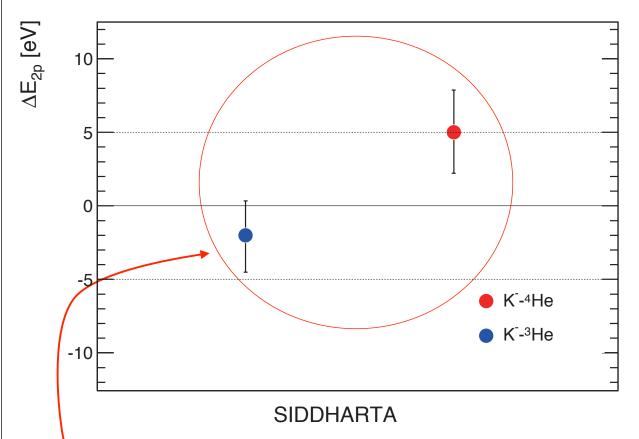
 ΔE_{2p} Precision Goal: \pm 2 eV (stat) \pm 2 eV (syst) Proposed in 2006

8 x SDDs (silicon drift detectors) ~150 eV FWHM


presented at PAC11

1. WHY ISOTOPE SHIFT?

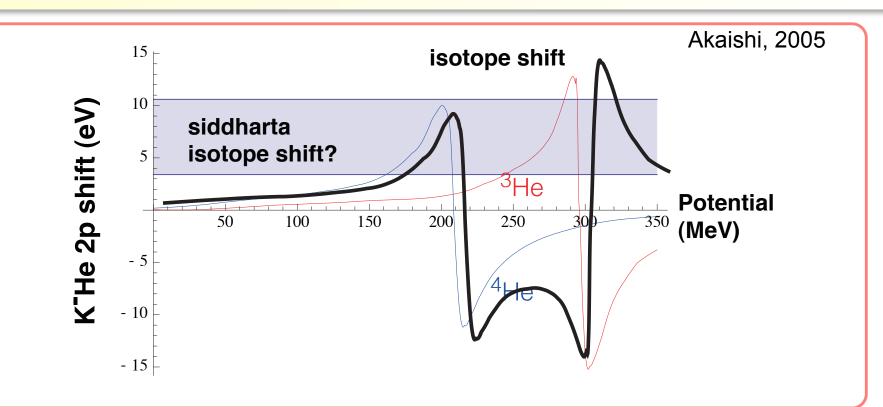
E17 has been ready to run, but meanwhile...


SIDDHARTA (at DAΦNE) published K⁻³He

SIDDHARTA main goals: Φ → K⁺K⁻, K⁻p, K⁻d in gas, using 144 SDDs

SIDDHARTA Collaboration, Physics Letters B 697, 199 (2011).

SIDDHARTA K-3He & K-4He



SIDDHARTA			
K ⁻³ He	-2 ± 2 ± 4		
K-4He (new)	$5 \pm 3 \pm 4$		

All results consistent with small (~0 eV) shift, BUT

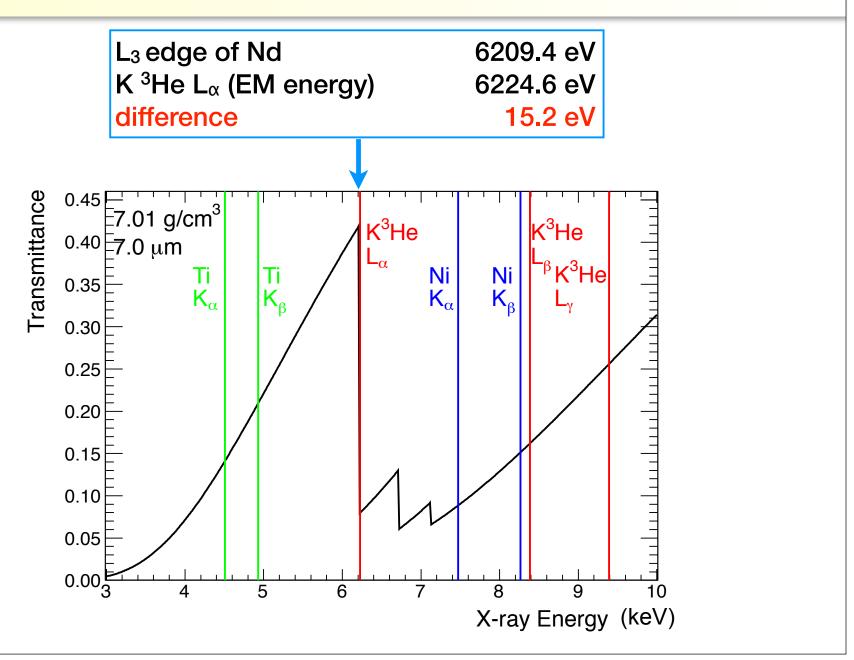
is this an indication of "finite isotope shift" of $7 \pm 3.6 \text{ eV}$? (~2 σ)

Isotope shift: theory

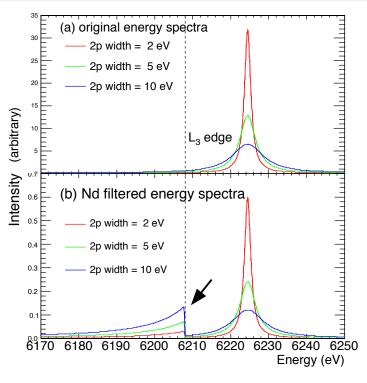
	2p shift (eV)	2p width (eV)
Kaonic ⁴ He	-0.3 - 0.4	1.6 - 2.3
Kaonic ³ He	-0.1 - 0.3	1.9 - 2.1
Isotope shift	0.0 - 0.5	

E. Friedman, talk at EXA 2011

Summary of systematic errors (shift)

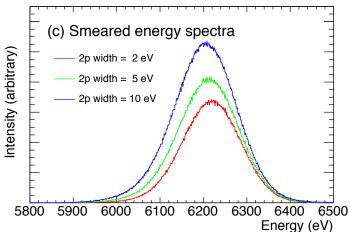

uncertainties	systema	systematic errors (eV)	
	$\Delta E(^{3,4}He)$	$\Delta E(^{3}He) - \Delta E(^{4}He)$	
(1) SDD response			
Low energy tail	±0.40	~0	
Pileup contamination	<+0.10	±0.10	
Compton tail	±0.17	~0	
(2) Energ can clarify the s			
	ituation		
Linea		+0.2	
Linea Calibration accuracy	±0.14	±0.2	
Linea		±0.2 ±0.12	
Linea Calibration accuracy	±0.14		
Linea Calibration accuracy (3) Background shape	±0.14 ±0.08	±0.12	
Linea Calibration accuracy (3) Background shape (4) E. M. value from Kaon mass	±0.14 ±0.08 ±0.2 ±0.72	±0.12 ~0	

presented at PAC12 a memorandum submitted to PAC14


2. WIDTH in addition to shift

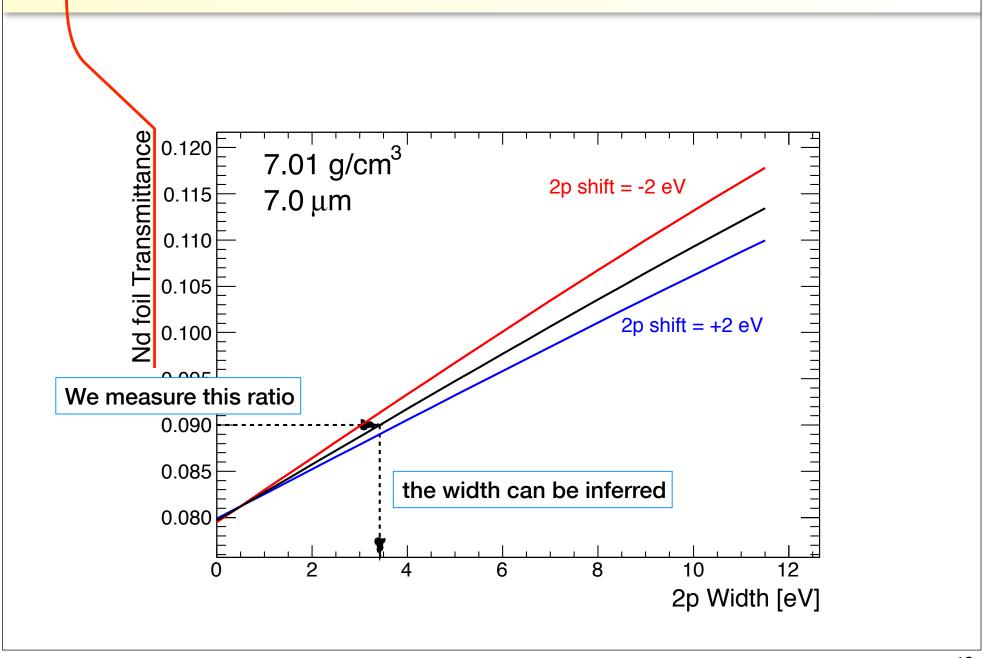
Determining the width by fitting a Voigt to the peak is impossible, unless the width is ≥ 20 eV, but we've found a better way

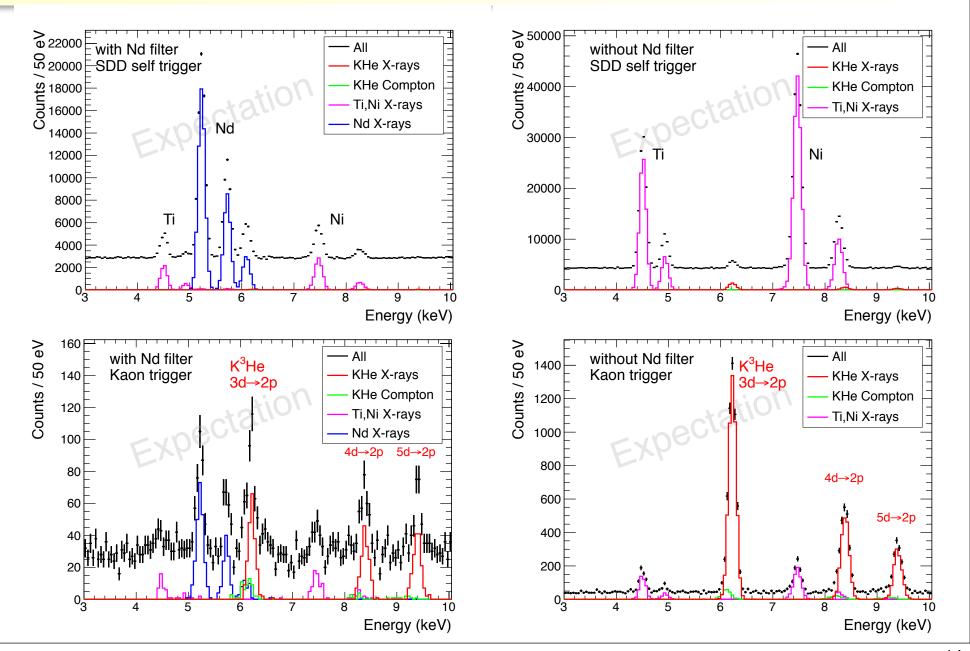
The method: X-ray absorption spectroscopy


The attenuated L_a counts → width

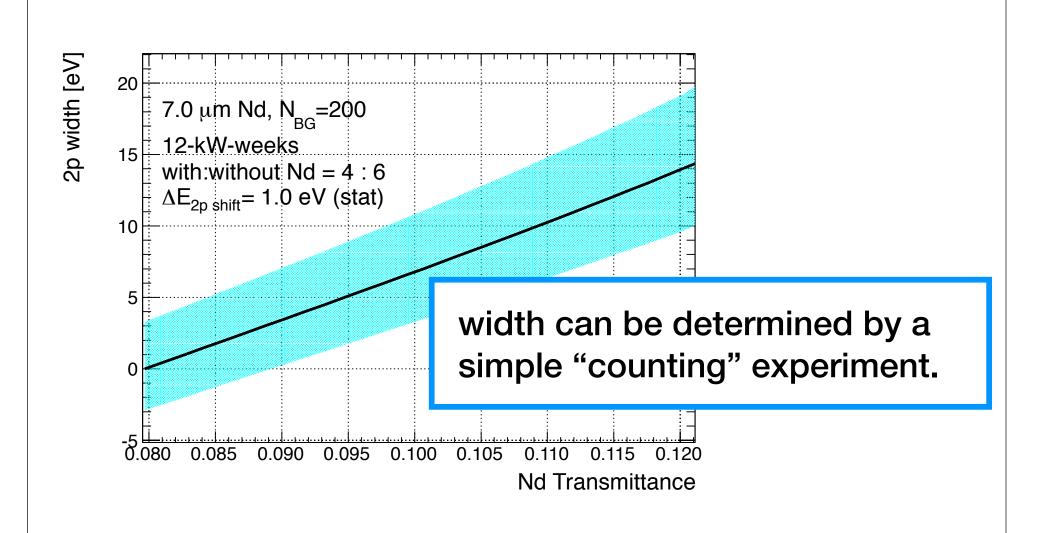
raw spectra for width 2, 5, 10 eV

Nd-filtered spectra for width 2, 5, 10 eV


larger width \rightarrow less attenuation below the Nd L₃ edge


Nd-filtered spectra measured with SDD width 2, 5, 10 eV

Yield depends on the width


(counts with foil)/(counts without foil)

Expected K-3He x-ray spectra w/wo Nd foil

Width can be determined to 3 eV precision

some possible issues

- ▶ Stop-K rate re-estimate ... in progress
- Nd foil was found to have a short "lifetime"
- ▶ Target cell needs to be exchanged & SDDs needs to be installed (E15-17 change-over time ~ 3 mo)
- (optional) SDD operation with magnetic field?

E17 Conclusions

1. E17 is ready to run & can be completed in 20 kW-weeks

insensitive to the spill structure

2. Beamtime request

		beam intensity	duration
	Reproducibility check for 0.9 GeV/c beam	$\sim 1 \; \mathrm{kW}$	5 days
	Range measurement (K ⁻ stop tune)	$\sim 3~\mathrm{kW}$	3 days
	Full commissioning with 4He target	$\sim 3~\mathrm{kW}$	3 days
	Production		
1	K ⁴ HeX measurement	10 kW	4 days
2	K^3HeX measurement without Nd	10 kW	6 days
3	K ³ HeX measurement with Nd	10 kW	4 days

c.f. original E17 proposal requested 5 weeks at 27 kW = 135 kW · weeks

2. Expected physics outputs

1&2 → kaonic ³He-⁴He ISOTOPE SHIFT determined to 2 eV

2&3 → kaonic ³He WIDTH measured to 3 eV

(independent of the resolution function of the SDD x-ray detector)