Status of EI4 KOTO

Taku Yamanaka Osaka Univ. Jan. 13, 2012 J-PARC PAC@KEK

Beamline

Realigned Collimators in Sep.

* Ready for beam

Csl Calorimeter Test in Vacuum

Aug-Sep, 2011

Output Changes in the test

5

Problem #I UV transmission

UV transmission of a silicone cookie between
 Csl and PMT dropped

Placed various items in vacuum w/ cookies

Culprit was the outgas from a potting material

UV Transmission of Si Cookie

We will bake the CW bases and clean other items

Problem #2 Temperature dependence

Cs temperature Cismic output vs. temperature

- * Temperature rose $(\sim 20C \rightarrow 35 \sim 43C)$, and reduced the light Y Cooling on Cu bar
- * Will improve the cooling

Cookie

PMT

301

CW

+19

20

Cu bar

+10

CsI

(=33

+31

- Deformation by cut could work as stopper; do not
 For large hook, depth of + shape is not enough. may a

Damaged preamps

- * 0.8% of preamps on PMTs were damaged due to discharge in vacuum
- Remaking new preamps vith protection circuit
- * Will be delivered from Feb.

Q

Search

Sidebar

Circuit.pdf (page 1 of 2)

UE cushion Protection against earthquakes

* Cushion in the back

10

Repair work was underway for beam in May

11

- * Replace silicone cookies
- * Replace preamps
- * Install cushions
- * Clean vacuum pump oil
- * Prepare to bake CW bases and cables
- * Upgrade cooling mechanism

Beam in Feb!

Run Plan for the Feb + Mar or June

14

Purpose

with known position and energy

* 3kW x 2weeks with slow DAQ (500evts/ spill) via VME

Calibrations by Ke3 vs

cosmic rays (50h run in 2010)

17

* Good correlation

* Need higher statistics

We need:

* February

- * 2~3 days to check beam shape and startup
- * 2 weeks for Ke3 (assuming 500/spill VME readout)
- * March or June
 - * 2 weeks for 3pi0 + Ke3
 - I week for pi0s produced run
 - I week for startup + CV tuning (if June)

* Can't take beam in October

Physics Run

- Nov/Dec of 2012~ (10kW)
 - >2weeks: Engineering Run in air
 - >2weeks: Engineering Run in vacuum
- Spring 2013 : Commissioning & Physics run (beyond E391a)
- May~June, 2013 (~4weeks+): Physics run for the G.N. limit
- * Summer: linac upgrade

DAQ Koto

- Readout via VME works: 500evts/spill
- * Optical fiber readout for (Feb), Mar/June runs: >2k/ spill

Publications

* "Development of a Neutral Beam Profile Monitor", G. Takahashi et al.,

Japanese J. of App. Phys., 50, 036701 (2011)

* "Measurement of KL flux at the J-PARC neutral-kaon beam line", K.Shiomi et al.,

Nucl. Inst. Meth. A664, 264 (2012).

Summary

- * Calorimeter ~worked in vacuum
- * Fixing problems found in the vacuum test
 - * Outgas, heat, preamps, discharges
- * Electron run in February
- * 3pi0 + Ke3 + pi0 runs in March or June

20(m)

-16

<u>Ч</u>-

0

Japanese Journal of Applied Physics **50** (2011) 036701 DOI: 10.1143/JJAP.50.036701

Fig. 7. Beam profiles after the collimators were adjusted.

Nuclear Instruments and Methods in Physics Research A 664 (2012) 264-271

Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima NUCLEAR INSTRUMENTS & MENDOS PHYSICS PHYSICS RESEARCH

flux measurement by reconstructing ${f K}_{L}
ightarrow \pi^{+}\pi^{-}\pi^{0}$

new <u>KL beam line</u> (south area of Hadron Hall) confirmation of neutral kaons (December 2009)

Fig. 7. Invariant mass distribution of $\pi^+\pi^-\pi^0$ after imposing all the kinematical cuts except the cut on $M_{\pi^+\pi^-\pi^0}$. Dots with bars indicate the data and a histogram shows the $K_L^0 \rightarrow \pi^+\pi^-\pi^0$ signals from the simulation result.