T2K status 1

Takashi Kobayashi IPNS, KEK

Contents

- Recovery
- Horn power supply problem
- Beam commissioning results
- Requests

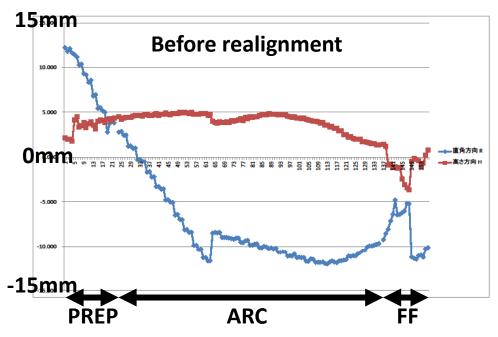
Recovery

- Everything necessary for beam operation were recovered before the scheduled beam on Dec. 24
 - Ground drop around TS and BD were backfilled (paving remains)
 - All magnets in primary line including SC mags were realigned
 - Parts submerged under the water were repaired or replaced
 - 3rd horn was once extracted, visually inspected, alignment was confirmed and reinstalled
 - Target and 1st & 2nd horn were not extracted
 - Position was measured at horn supporting structures and realigned. The alignment was also checked by lowering laser marking device

Around target station

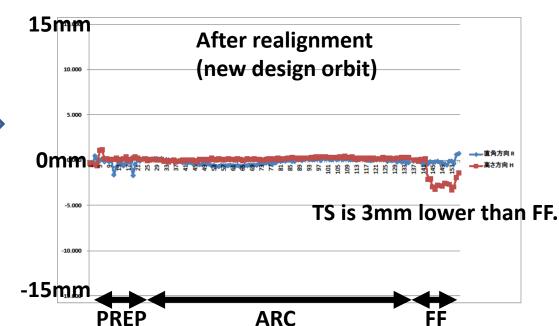
Repair around Beam Dump

Super conducting magnets


- Cryogenics system worked successfully in May.
- Excitation test was done successfully in May.
- Alignment Done in Aug. Re-survey performed.
- Corrector magnets already repaired.
 (Additional heat anchor installed.)

Target

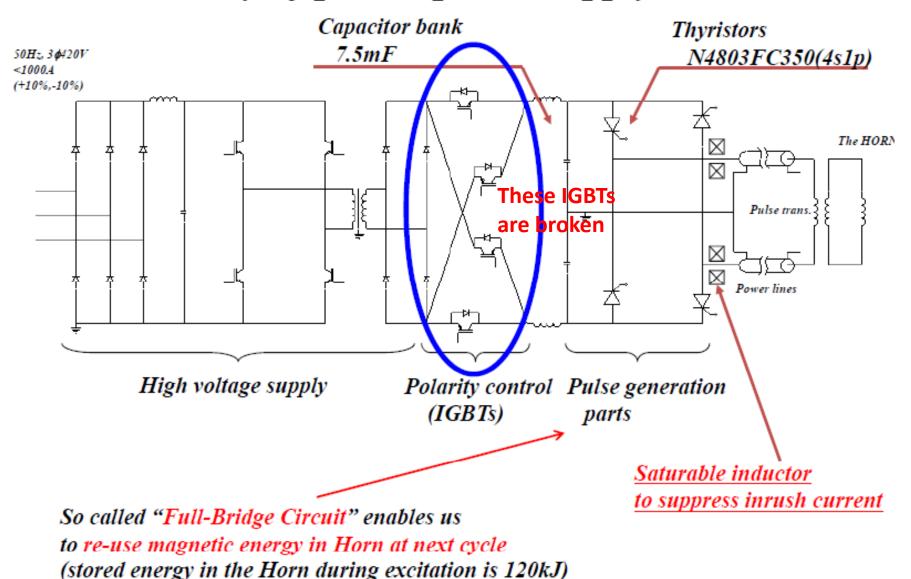
- Installed target
 No clear change of He flow is found.
- Spare target No.2(Toshiba) and No. 3(RAL)
 No damage is found in the graphite parts in X-ray photo.
 - → Spares were at TS ground floor at the earthquake. They were also supported as cantilever.
- →No indication of the damage of the installed target is found, though we have only circumstantial evidence.


Realignment

Magnet location [measured – design]

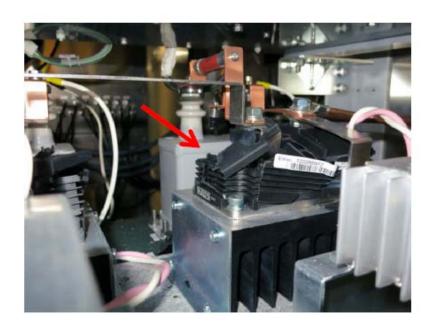
--- ΔR :horizontal direction

--- ∆H :height


Realignment was done based on the May 2011 survey results. The beam orbit was also redesigned.

Horn power supply failure

- On Dec. 22, during final operation test, horn power supply was broken
- Several IGBTs to switch charging capacitors were burst
- From visual inspection,
 - Several out of 12 IGBTs are apparently broken
 - It is natural to consider that remaining IGBT are also damaged
 - Choke coil next in serial to IGBTs are also damaged
 - Unexpected huge current went through IGBT
- The reason why such huge current was drawn is now under investigation
 - Control circuits confused by some electrical (spike?) noise issued "switch on" signal to IGBTs at the timing when huge charge is stored in Capacitor bank?
 - Deterioration of IGBTs?


Main circuitry of pulsed power supply

10

Plan and status of horn PS recovery

- Recovery: 2 methods in parallel
 - 1. Repair present power supply
 - We have no spare IGBTs with same spec
 - It takes several month to procure
 - We use lower HV rating IGBTs (3.3kV instead of 6.5kV)
 - J-PARC MR group has enough stocks. So immediately available
 - May limit current < 250kA (need to check with test operation)

2. Revive old power supply

- Had been disassembled and stored at Tsukuba for ~yr
 - Need to check healthiness
- Have never driven 3 horns with 1 power supply
 - May limit current <250kA or rep rate (simulation says OK)

Present status

- Old power supply has been already moved from Tsukuba and being assembled
- Design work of repair and protection improvements has been started

Schedule

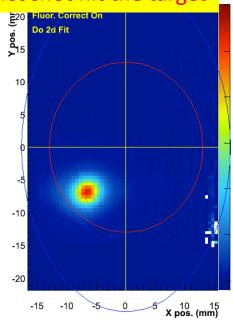
- With either methods, the recovery work will take 2 month at least
- We aim to be ready for full data taking w/ horn recovered from March 1st
- We plan to take scheduled beam in January with the horn off in order to make beam studies for high power operation and various systematic studies using near neutrino detectors

Status of spare horns

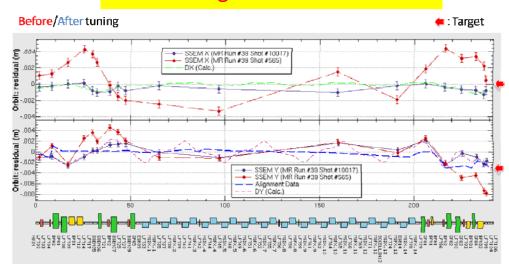
- Current spare horns:
 - Only horn1 and its support module exist.
- For horn2 and horn3, we already have some parts
 - Horn2: inner conductor, large ceramic ring
 - Horn3: inner conductor, large ceramic ring, large sealing parts
 - Support modules need to be produced.
- Plan to prepare spare horns
 - Time-consuming parts will be made in this fiscal year.
 - Outer conductors for horn2 and horn3
 - Several types of ceramic insulators
 - Other parts
 - Assembly will be done in next fiscal year.

Beam (re)commissioning in Dec.2011

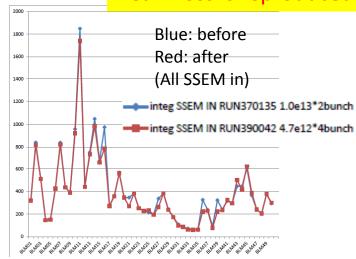
Goal

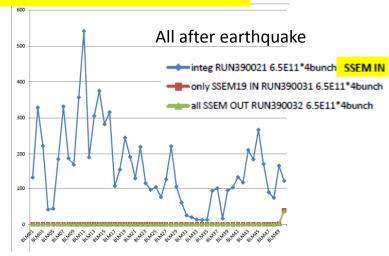

- Confirm functionality & reproducibility of beam line components & detectors with low intensity
 - Rough tuning of primary beam transport with new magnet alignment

Summary of results

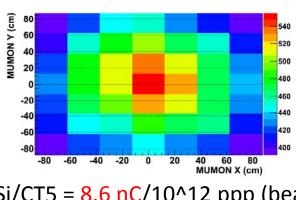

- Functionality and reproducibility of all beam line equipments (except horns) are confirmed
 - All beam monitors worked well
 - At this moment, proton orbit is tuned as good as 3mm displacement from design orbit
 - Beam loss is also confirmed to be the same level as before
 - Took data for ~3hrs at 28kW w/o any trouble
 - Delivered POT in Dec.: 7.6e+16
 - Reproducibility of muon and neutrino yield (normalized by Np) was confirmed

Beam (re-)commissioning

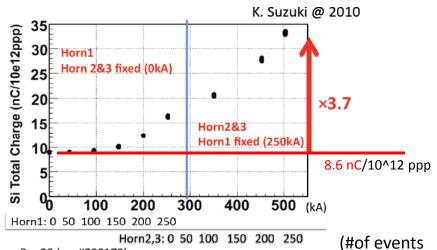


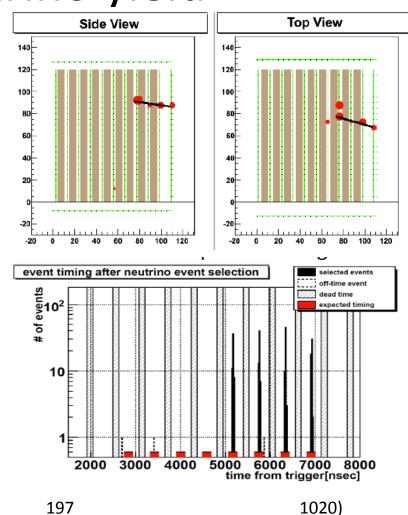


Orbit tuning done to <3mm level

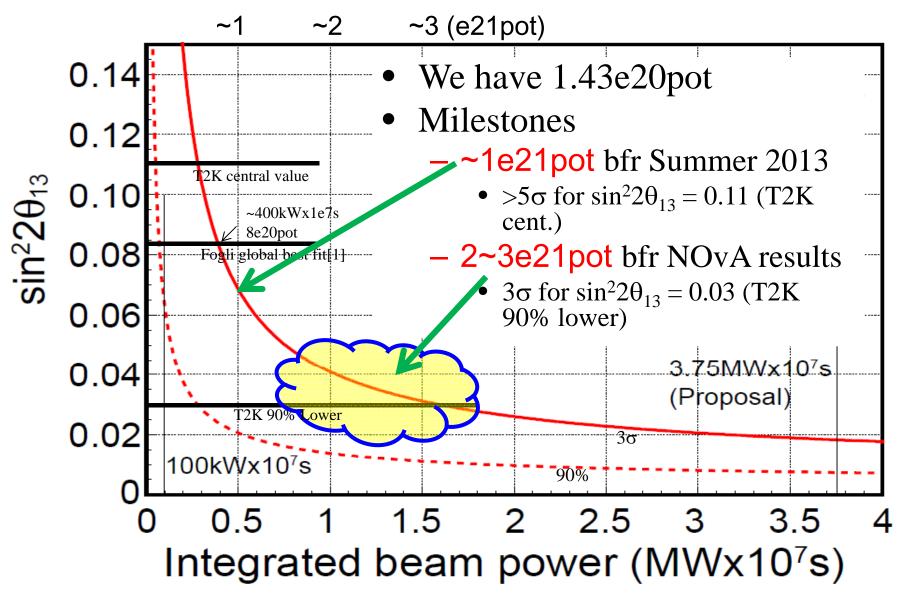


Beam loss is reproduced and very low w/o SSEM in




Muon/Neutrino yield

Si/CT5 = 8.6 nC/10^12 ppp (beam at target center)


- Run29 (run#290173)
- All horns off → All horns on (250kA)
- Confirmed muon yields increased by 3.7 times

	Neutrino event rate in FV	Sand muon event rate
RUN39	$2.94 \pm 0.21 ({\rm stat.}) \ {\rm events} \ / \ 10^{15} {\rm POT}$	$1.23 \pm 0.04 (stat.) events / 10^{14} POT$
RUN34 w/o horn	$2.85 \pm 0.19 (\text{stat.}) \text{ events / } 10^{15} \text{POT}$	1.20 \pm 0.04(stat.) events / 10^{14} POT

Very good agreement with before the earthquake!

Expected sensitivities & milestones

To realize the milestones

A case study (1mon = 1e7s/6 = 19.3days)

Nu12(DC, RENO results?)																									
DayaBay							NOVA first results?																		
CY 2012			2013						2014							2015									
	1	4	7	1	0	1	4		7	10		1	4		7		10		1	4		7		10)
Acc/Nu		NU	N		NU	LINAC				N		1U					NU								
MR Power	200				300						350		Ш				450								
Mon/yr	3				6						3							6							
Integ. Power	169				469						644							1094 (kV			N.1	V.1 e7s)			
Integ. POT	3.51	E+20				Ç).8E+20) [1.	3E+2	21					2.	3E+	21				

Need

Milestones: ~1e21

2~3e21

- ♦ Higher rep rate & Higher PPP & control loss → Higher power
- Beam time as long as possible
- Critical items:
 - Short term
 - Replacement of inj. Kicker before next beam: Done!
 - Addition of RF for higher rep&ppb: (Partly) Done!
 - Higher capacity for beam loss (collimator): being done
 - Improve rep rate even before whole power supply replacement
 - High power beam study (How much ppb can be stacked?)
 - Longer term (few yrs) toward design intensity and beyond
 - R&D of high gradient RF core
 - Complete R&D of high rep rate MR power supply & budget request (~1Hz or more)

Summary

- All components necessary for beam operation were recovered after damages by the earthquake
- Succeeded to take beam from Dec. 24 as scheduled
- Functionality and reproducibility of all components expect horns were confirmed
 - Muon&neutrino yield are consistent with before the earthquake
- Horn power supply was broken
 - * We aim to recover the horn power supply by the end of Feb. and restart full experiment from March 1st
- Highest priority is to establish non-zero θ_{13} and precise measurement of θ_{13} as soon as possible
- Milestones
 - * ~ 1e21pot : Summer 2013
 - Conclude non-zero θ_{13} for presently estimated best fit values
 - * 2~ 3e21pot : Before NOvA first results (in 2014~2015?)
- We need beam power and time as much as possible
 - Scenario to improve beam power before PS replacement
 - High power beam study
 - Power supply & RF R&D for higher rep rate