E17 Status Report K⁻-³He 3d→2p x-rays

Ryugo S. Hayano, Tokyo

for J-PARC E17 Collaboration

R.S. Hayano, Jan 14, 2011, 13th J-PARC PAC

J-PARC E17 collaboration

H. Bhang¹, M. Cargnelli², S. Choi¹, C. Curceanu³, O. V. Doce³, S. Enomoto⁴, H. Fujioka⁵, Y. Fujiwara⁶, C. Guaraldo³, **T. Hashimoto⁶**, **R. S. Hayano⁶**, T. Hiraiwa⁵, M. lio⁷, S. Ishimoto⁸, T. Ishiwatari², K. Itahashi⁷, M. Iwasaki^{7,9}, H.Kou⁹, P. Kienle^{2,10}, J. Marton², Y. Matsuda⁶, H. Noumi⁴, H. Ohnishi⁷, S. Okada³, H. Outa⁷, F. Sakuma⁷, Y. Sada⁵, M. Sato⁶, M. Sekimoto⁸, H. Shi⁶, D. Sirghi³, F. Sirghi³, T. Suzuki⁶, K. Tanida¹, H. Tatsuno⁶, M. Tokuda⁹, D. Tomono⁷, A. Toyoda⁸, K. Tsukada⁷, A. R. Vidal³, E. Widmann², B. Wunschek², T. Yamazaki^{6, 7}, J. Zmeskal²

SNU¹, SMI², LNF³, RCNP⁴, Kyoto Univ.⁵, Univ. of Tokyo⁶, RIKEN⁷, KEK/J-PARC⁸, Tokyo Tech⁹, Tech. Munich Univ.¹⁰

E17 : $K^{-3}He 3d \rightarrow 2p x$ -rays

E17 Conclusions

1. E17 is ready to run & can be completed in 20 kW-weeks

2. Beamtime request

		beam intensity	duration
	Reproducibility check for 0.9 GeV/c beam	$\sim 1 \text{ kW}$	5 days
	Range measurement (K^- stop tune)	$\sim 3~{ m kW}$	$3 \mathrm{~days}$
	Full commissioning with ${}^{4}He$ target	$\sim 3~{ m kW}$	3 days
	Production		
	K ⁴ HeX measurement	$10 \mathrm{kW}$	4 days
2	$K^{3}HeX$ measurement without Nd	$10 \mathrm{kW}$	$6 \mathrm{days}$
3	$K^{3}HeX$ measurement with Nd	10 kW	4 days

c.f. original E17 proposal requested 5 weeks at 27 kW = 135 kW \cdot weeks

2. Expected physics outputs

- 1&2 → kaonic ³He-⁴He ISOTOPE SHIFT determined to 2 eV
- 2&3 → kaonic ³He WIDTH measured to 3 eV

(independent of the resolution function of the SDD x-ray detector)

presented at PAC11

1. WHY ISOTOPE SHIFT?

E17 has been ready to run, but meanwhile...

SIDDHARTA (at DAΦNE) published K⁻³He

SIDDHARTA K⁻³He & K⁻⁴He

is this an indication of "finite isotope shift" of 7 ± 3.6 eV ? (~2 σ)

Isotope shift : theory

E. Friedman, talk at EXA 2011

Summary of systematic errors (shift)

uncertainties	systematic errors (eV)		
	ΔE(^{3,4} He)	$\Delta E(^{3}He) - \Delta E(^{4}He)$	
(1) SDD response			
Low energy tail	±0.40	~0	
Pileup contamination	<+0.10	± 0.10	
Compton tail	± 0.17	~0	
Shelf structure	± 0.10	~0	
Energy resolution	<±0.03	<±0.05	
(2) Energy scale			
Linearity	±0.50	~0	
Calibration accuracy	± 0.14	±0.2	
(3) Background shape	±0.08	±0.12	
(4) E. M. value from Kaon mass	±0.2	~0	
Quadratic sum of (1)-(4)	±0.72	±0.26	
Systematic error of 3He/4He	shift : 0.72 eV	isotope shift : 0.26 eV	
(Statistical error)	(1.0 eV)	(1.5 eV)	

Summary of systematic errors (shift)

uncertainties	systematic errors (eV)			
	ΔE(^{3,4} He)	$\Delta E(^{3}He) - \Delta E(^{4}H)$		
(1) SDD response				
Low energy tail	± 0.40	~0		
Pileup contamination	<+0.10	± 0.10		
Compton tail	± 0.17	~0		
Shelf				
Ener isotope shift measured by E17 to ±1.8 eV				
(2) Energ can clarify the s	ituation			
Calibration accuracy	±0.14	±0.2		
(3) Background shape	±0.08	±0.12		
(4) E. M. value from Kaon mass	±0.2	~0		
Quadratic sum of (1)-(4)	±0.72	±0.26		
Systematic error of 3He/4He s	shift : 0.72 eV	isotope shift : 0.26 eV		
(Statistical error)	(1.0 eV)	(1.5 eV)		

presented at PAC12

2. WIDTH in addition to shift

Determining the width by fitting a Voigt to the peak is impossible, unless the width is \ge 20 eV, but we've found a better way

The method: X-ray absorption spectroscopy

The attenuated L_{α} **counts** \rightarrow **width**

raw spectra for width 2, 5, 10 eV

Nd-filtered spectra for width 2, 5, 10 eV

larger width \rightarrow less attenuation below the Nd L₃ edge

Nd-filtered spectra measured with SDD width 2, 5, 10 eV

Yield depends on the width

(counts with foil)/(counts without foil)

Expected K-³He x-ray spectra w/wo Nd foil

Width can be determined to 3 eV precision

E17 Conclusions

1. E17 is ready to run & can be completed in 20 kW-weeks

insensitive to the spill structure

2. Beamtime request

(1) (2) (3)

	beam intensity	duration
Reproducibility check for 0.9 GeV/c beam	$\sim 1 \ { m kW}$	5 days
Range measurement (K^{-} stop tune)	$\sim 3~{ m kW}$	3 days
Full commissioning with ${}^{4}He$ target	$\sim 3 \; \mathrm{kW}$	3 days
Production		
K ⁴ HeX measurement	$10 \mathrm{kW}$	4 days
$K^{3}HeX$ measurement without Nd	$10 \mathrm{kW}$	6 days
$K^{3}HeX$ measurement with Nd	10 kW	4 days

c.f. original E17 proposal requested 5 weeks at 27 kW = 135 kW \cdot weeks

2. Expected physics outputs

- $1\&2 \rightarrow \text{kaonic } {}^{3}\text{He} {}^{4}\text{He} | \text{SOTOPE SHIFT} \text{ determined to 2 eV}$
- 2&3 → kaonic ³He WIDTH measured to 3 eV

(independent of the resolution function of the SDD x-ray detector)

backup slides

Contribution of Compton scattering in the target

optimizing the beamtime allocated for foil measurement

 \leftarrow less time allocate for foil measurement more time allocate for foil measurement \rightarrow

optimizing the Nd foil thickness

Breakdown of the systematic errors:

- SDD response
- Energy calibration
- Background shape
- E. M. value from Kaon mass

SDD response

SDD response (1) : Low-energy tail

Intensity of tail structure : fixed in the K-He spectrum fitting

-40 -30 -20 -10 0 10 20 30 Tail ratio uncertainty (%)

40

50

-50

3He and 4He measurements)

SDD response (2) : Pileup contamination

Description of pre-gate (baseline) and peak heights

SDD response (3) : Compton scattering

Compton scattering (mostly inside liquid helium target)

 \rightarrow Making tail structure in the low energy side

Same tendency for 3He and 4He :

systematic errors in $\Delta E(3He) - \Delta E(4He)$: ~ 0 eV (cancelled)

SDD response (4) : Shelf structure

□ Shelf profile is much smaller component than tail profile

■ From Si(Li), shelf intensity has negative E-dependence → shelf ratio should be smaller than that of Mn (5.9keV) Same tendency for 3He and 4He : $\rightarrow \Delta E \sim +-0.1 \text{ eV}$ systematic errors in $\Delta E(3He) - \Delta E(4He)$: $\sim 0 \text{ eV}$ (cancelled)

SDD response (5) : Energy resolution

Energy resolution will be determined by the calibration spectrum

Energy scale (1): calibration peak statistics

 \rightarrow systematic errors in isotope difference : $\pm 0.2 \text{ eV}$

Energy scale(2) : non-linearity

ADC non-linearity (CAEN V785 peak hold ADC)
 12 bit (0-4V) 1V/ch (~ 3eV/ch)

Residual after linear fit

Non-linearity of overall system will be measured with the final setup. Presently we use an error obtained in E570 $\pm 0.5 \text{ eV}$

(should be cancelled in the isotope measurement)

Background shape

^D 2nd order polynomial background will be used

Peak shift by changing background fitting function

1st <-> 2nd order polynomial

impossible to estimate before taking actual spectrum

In E570 analysis Systematic error : $\pm 0.08 \text{ eV}$ \rightarrow take this value for $\Delta E(3He)$ and $\Delta E(4He)$

Errors in isotope shift

might be uncorrelated in 3He and 4He spectra systematic error of isotope shift : $\pm 0.12 \text{ eV}$

E. M. value from Kaon mass

Uncertainty of negative kaon mass

Weighted average 493.663 ±0.011 eV

E.M value of K-3He, K-4He 2p shift has uncertainty of

> ΔE : ±0.2 eV (Leading order only)

Correlated with each other $\Delta E(3He) - \Delta E(4He)$: ~0 eV