Revised Run Plan of E13 "Gamma spectroscopy of light Λ hypernuclei"

H. Tamura Tohoku University for the E13 Collaboration

1. Introduction

- 2. Purpose of E13
- 3. Revised Run Plan
- **4. Preparation Status**
- 5. Summary

1. Introduciton

<u>Hyperball</u>

Motivation of Hypernuclear γ Spectroscopy

High-precision ($\Delta E \sim a$ few keV) spectroscopy with Ge detectors

1. YN, YY interactions

B(M1) -> μ_{Λ} in nucleus

Unified picture of B-B interactions Understand short-range nuclear forces $K, 2\pi, \eta, ...$ Understand high density nuclear matter (n-star) 9 Level energies ->AN spin-dependent forces, Σ N-AN force, CSB,...

2. Impurity effects in nuclear structure E13 Changes of size/shape, symmetry, cluster/shell structure,.. B(E2), E(2⁺) -> shrinking effect, deformation change

3. Medium effects of baryons probed by hyperons

F13

<u>AN spin-dependent interactions</u>

Low-lying levels of Λ hypernuclei

PRL 86 (2001) 4255 PRC 65 (2002) 034607

PRC 77 (2008) 054315

PRL 93 (2004) 232501 EPJ A33 (2007) 247

2. Purpose of E13

Purpose of E13 experiment

Approved as DAY1, Second priority

<u>ΛN interaction</u>

Using (K⁻, π ⁻) reaction at $p_{\rm K}$ = 1.5 (or 1.1) GeV/c

(1) Charge symmetry breaking in AN interaction and spin-flip property in hypernuclear production

⁴_ΛHe: Largest CSB is suggested but previous data is suspicious.
 Easiest (100 hrs)

- (2) Radial dependence of ΛN interaction from sd-shell hypernuclei
 ¹⁹_ΛF: The first sd-shell hypernuclei (100 hrs)
- (3) Study $\Lambda N \Sigma N$ coupling force ${}^{10}_{\Lambda}B$ and ${}^{11}_{\Lambda}B$: (100+200 hrs) Inconsistency exist but previous data not enough. Few-body approach as well as shell model possible.

g-factor of Λ in nucleus

(4) Spin-flip B(M1) measurement and g_{Λ} in a nucleus

 $^{7}{}_{\Lambda}$ Li : Least ambiguities exist and most reliable. (500 hrs)

Purpose of E13 experiment

Approved as DAY1, Second priority

<u>ΛN interaction</u>

```
Using (K<sup>-</sup>,\pi<sup>-</sup>) reaction at p_{\rm K}= 1.5 (or 1.1) GeV/c
```

- (1) Charge symmetry breaking in AN interaction and spin-flip property in hypernuclear production
 - ${}^{4}_{\Lambda}$ He : Largest CSB is suggested but previous data is suspicious.

<u>Magnetic moment of a Λ in a nucleus</u>

Baryon magnetic moment in nucleus:

affected by partial restoration of chiral symmetry?

 \rightarrow Origin of baryon spin and mass

 Λ free from Pauli effect is a good probe.

Direct measurement is difficult ($\tau \sim 0.1$ -- 0.2 ns)

Preliminary data on B(M1) in ⁷ Li (BNL E930)

¹⁰B (K⁻, π^-) ¹⁰_AB^{*}, ¹⁰_AB^{*}(3⁺) -> ⁷_ALi^{*}(3/2⁺) + ³He indirect population

3. Revised Run Plan

Both spin-flip and nonflip states should be produced.

-> $p_{K} = 1.1$ or 1.5 GeV/c

 $p_{K} = 1.1 \text{ GeV/c}$: K1.1 + "SKS" (ideal) $p_{K} = 1.5 \text{ GeV/c}$: K1.8 + SKS (realistic)

High K/ π ratio to minimize radiation damage to Ge detectors -> Double-stage separation. K1.8BR is not good.

E13 Run Plan nal plan <u>revised plan</u>

eam line **n**, beam beam line

Target	spectr. p power	р _К (GeV/c)	beam time (hrs.)	spectr. p power	р _К (GeV/c)	beam time (hrs.)	
tuning			300	K1.8		120	1 st Part
⁴ _∧ He		1.1, 1.3, 1.5, 1.8	100	sks	1.5	240	Oct. 2012
¹⁹ F	K1.8 + SKS	1.5 CF₂ target	100	10 kW (Pt)	1.8	480 HF target	~ Jul. 2013
4							
tuning	270 kW	, N ^L		K1.1		300	
¹⁰ ^A B	270 kW (Ni)	Cult 1.5	100	K1.1 + SKS	1.1	300 100	2 nd Part
¹⁰ _A B ¹¹ _A B	270 kW (Ni) sti Very	1.5 1.5	100 200	K1.1 + SKS 50 kW (Pt)	1.1 1.1	300 100 200	2 nd Part after
tuning ¹⁰ _Λ B ¹¹ _Λ B ⁷ _Λ Li	270 kW (Ni) si	1.5 1.5 1.5	100 200 500	K1.1 * SKS 50 kW (Pt)	1.1 1.1 1.1	300 100 200 720	2 nd Part after Jan. 2014

Using K1.1, we can run simultaneously with other exp'ts at K1.8/K1.8BR lines.

Proposed B(M1) measurement

To avoid ambiguities, we use the best-known hypernucleus, ${}^{7}_{\Lambda}$ Li.

- Energies of all the bound states and γ -ray background were measured.
- Cross sections are reliably calculated.
- τ = 0.5ps, t_{stop} ~2.7 ps for 1.5 GeV/c (K⁻, π ⁻) and Li₂O target ~ 2.2 ps for 1.1 GeV/c

(Doppler Shift Attenuation Method works only when $\tau < t_{stop}$)

Expected yield and sensitivity

4. Preparation Status

Setup at K1.8 (for E13 1st Part)

Hyperball-J

J-PARC conditions

- Higher counting and energy deposit rate (2 MHz π⁺ -> 10 MHz K⁻ beam)
- Severe radiation damage

Features

- Large photo-peak efficiency
 ε ~ 6% @1 MeV with 32 Ge's (60%) high γγ coincidence efficiency
- Radiation-hard Ge detector Mechanically-cooled low temp. detector
- Fast background suppressor PWO counters
- Digital readout and Pulse shape analysis Pile-up decomposition
- Adjustable detector geometry

Hyperball-J under assembly at Tohoku Univ.

Test of the Hyperball-J system

Preparation Status for Part 1

SksMinus Spectrometer

Ready. Performance to be checked next month.

Hyperball-J

Ge detectors

All (28) purchased, but 4 damaged on 3.11. To be repaired by June Performance with mechanical cooler almost OK.

(Under noise reduction)

PWO counters

All purchased, Under assembly,

Cooling system ready, performance OK

Support frame -- Ready, Tested at Tohoku Univ.

Targets

He cryo-target: Fabrication almost finished. To be tested soon. HF target: Designed. No security problem.

We can start running after October, 2012

6. Summary

- E13 aims at studies of ΛN interaction from ${}^{4}_{\Lambda}He$, ${}^{10}_{\Lambda}B$, ${}^{11}_{\Lambda}B$ and ${}^{19}_{\Lambda}F$, and measurement of Λ 's g-factor in nucleus from ${}^{7}_{\Lambda}Li$.
- Finishing all the E13 menu requires 270 kW x 1000(+30) hrs, which seems unrealistic now.
- We decided to split the beam time into two parts: 1^{st} Part for ${}^{4}_{\Lambda}$ He, ${}^{19}_{\Lambda}$ F: K1.8 and SKS, 10 kW power x 720(+120) hrs. 2^{nd} Part for ${}^{7}_{\Lambda}$ Li, ${}^{10}_{\Lambda}$ B, ${}^{11}_{\Lambda}$ B: K1.1 and SKS, 50 kW power x 1020(+300) hrs.
- Almost the same results as in the original proposal are expected to be obtained in a reasonable beam time.
- Preparation for Hyperball-J and SksMinus is going well. We can start running the 1st Part after October 2012.
- We request installation of SKS at K1.1 beam line after the 1st Part.

Backup

Charge Symmetry Breaking in Λ **N int.**

mechanism of CSB from spin dependence

mechanism of CSB from spin dependence