Report on Technical Issues for J-PARC E18 Experiment (Revised Version for the two-step plan): "Coincidence Measurement of the Weak Decay of ¹² C Hypernucleus and the Three-body Weak Interaction Process"

> H. Bhang (Seoul National University)

FIFC(PAC) presentation Jan. 14-16, 2011

- I. The Aim of E18 and the revised two-step run plan.
- II. Physics Motivations and Recent progress on 3-body NMWD.
- III. 1st step Proposal and the Expected Results
- IV. Setup and Technical Issues
- v. Run strategy

The Revised Two-step Plan

- 1. Revised Two-step Run plan;
 - Current duty factor of K1.8 beamline remains 10-15 %.
 - Expected improvement; at most ~ 30 % in a couple of years,

1) E18_1st-step run; for solid confirmation of 2N-NMWD with ~30% df beam.

2) E18_Main run; for full statistics run

for 10% stat. error for Γ_{2N} , Γ_n , Γ_p , Γ_n/Γ_p with high df beam.

- 2. First-step run ; total $0.8 \times 10^{12} \pi$ + beam (70 shifts) on 4g/cm² ¹²C target, 3kW, 2×10⁶ π /2s(spill), 30% duty factor beam.
- 3. Physics Output;
 - can achieve a direct and exclusive confirmation of 3-body NMWD by measuring the triple coin and N_{NN} (nbb).
 - can achieve a solid confirmation of the branching ratio b_{2N} of at least 3-4 σ confidence level instead of the current 2σ .
- 4. $N_{NNN} \sim 52(6)$, $N_{NN}(nbb) \sim 90(35)$, $N_{pp}(bb) \sim 50(8)$.

These results can be published to meet the urgent need of a solid confirmation of 2N-NMWD in the weak decay research community.

	E508	E18_main	E18_1 st -step
N_{π}^{tot}	2T	5T (80shifts)	0.8T (70 shifts)
n _π /spill	4 M/4sec	10 M/spill(6sec)	2 M/spill(6sec)
d.f.	~1	~1	~0.3
N _{np} (bb)	116	(×7×2.5) ~2030	(×7×.5) ~320
N _{nn} (bb)	43	(×3.5×2.5) ~376	(×3.5×.5) ~60
N _{pp} (bb)	8	(4×4×2.5) ~320	(4×4×.5) ~51
N _{np} (nbb)	9	(×12×2.5) ~270	(×12×.5) ~43
N _{nn} (nbb)	16	(×4.5×2.5) ~280	(×4.5×.5) ~45
N _{NNN}	6	(×12×1.8×2.5) ~325	(×12×1.8×.5) ~52

I. Weak Decay Modes of Λ Hypernucleus

$$\Gamma_{tot}(=1/\tau) \begin{cases} \prod_{n=1}^{m} \left\{ \Gamma_{\pi^{-}}(\Lambda \Rightarrow p \pi^{-}) & \text{Mesonic} \\ \Gamma_{\pi o}(\Lambda \Rightarrow n \pi^{o}) & q \sim 100 \text{ MeV/c} \\ \end{array} \right. \\ \left\{ \prod_{n=1}^{n} \left\{ \prod_{n=1}^{n} \left(\Lambda p \Rightarrow np \right) & (1N) & \text{Nonmesonic} \\ \Gamma_{n}(\Lambda n \Rightarrow nn) & (1N) & \text{Nonmesonic} \\ \Gamma_{2N}(\Lambda NN \Rightarrow nNN) & (2N) & q \sim 400 \text{ MeV/c} \\ \end{array} \right. \\ \left\{ \prod_{n=1}^{n} \prod_{n$$

II. Why NMWD?

1. The fundamental Motivation to study NMWD is to study the elementary B-B Weak Interaction ;

 Λ + N (n or p) \rightarrow N + N (Δ S=1 B-B Weak Interaction)

- NMWD is the only window to observe this interaction so far.
- 2. Decay Observables ;
 - Decay widths; Γ_n , Γ_p ; difficult to measure them directly.
 - Asymmetry;
 - Γ_n/Γ_p and the asymmetry have been mainly studied so far.

Where
$$\Gamma_{tot} = \Gamma_m + \Gamma_{nm}$$

 $\Gamma_{nm} = \Gamma_n + \Gamma_p$
 $= \Gamma_{tot} - \Gamma_m = \Gamma_p (1 + \Gamma_n / \Gamma_p); \Gamma_n / \Gamma_p \text{ puzzle problem}$
 $\Rightarrow \Gamma_n + \Gamma_p + \Gamma_{2N}$
 $\Gamma_{nm} - \Gamma_{2N} = \Gamma_p (1 + \Gamma_n / \Gamma_p)$

Γ_n/Γ_p puzzle and the previous searches

2. Recent Development of Γ_n/Γ_p^{theory}: 0.3 ~ 0.7
 K.Sasaki (Direct Quark), Nucl. Phys. A669 (2000) 371

Coincidence Meas. (KEK-PS E462/E508) and Γ_n/Γ_p resolution

- Measure; n, $p \rightarrow N_n(E)$, $N_p(E)$

- Measure Pair yields wrt θ ; to measure Γ_n/Γ_p unambiguously. { $Y_{nn}(\theta), Y_{np}(\theta)$ }/ $Y_{nm} \equiv$ { $N_{nn}(\theta), N_{np}(\theta)$ }

- Seperate back-to-back(bb) and non-bb(nbb) kinematic events.

- Require back-to-back ($\cos\theta < -0.7$) condition. \rightarrow to supress FSI and 2N-NMWD.

Coincidence Yields (NN angular correlations)

Quenching of Singles Yield

- 1. Quenching in both p and n spectra from those of INC(1N).
- 2. What would be the mechanism for the nucleon Quenching?
 - \rightarrow FSI & 3-Body process.

 \rightarrow The 3-body NMWD (or 2N-NMWD) has been calculated first

by Alberico-Ericson for Nuc. matter ('91). Then Ramos-Oset extended to finite nuclei ('94). Recently Bauer-Garbarino further extended it.

$$\rightarrow$$
 $\Gamma_{2N} = ~0.27 \Gamma_{\Lambda} (^{12}_{\Lambda}C)$

Γ_{2N} and the quenching of yields

• Total sum of the yields under 300 MeV/c is reproduced with the branching ratio, $b_{2N}=0.29$.

• $b_{2N} \equiv \Gamma_{2N} / \Gamma_{nm} = 0.29 \pm 0.13$

	Present		
	Experiment		
Γ_n/Γ_p	$0.51 \pm 0.13 \pm 0.05$		
Γ _{nm}	0.95±0.04		
b _{2N}	0.29±.13		
Γ _{2N}	0.27±.13		
Γ _n	0.23±0.08		
Γ _ρ	0.45±0.10		
Phys. Rev. Lett. 103 ('09) 182502			

Errors are large, .25-.45.
Need a better measurement.
→ E18 (J-PARC)

Γ_{2N} of Finuda experiment

- Though two results are consistent each other, both of them are extracted rather indirectly and have so large uncertainty that the confidence levels for b_{2N} are only those of 2σ.
- Need more direct and exclusive confirmation of 2N-NMWD and the accurate measurement of b_{2N}.

E18 Decay Counter Setup

J-PARC 50GeV E18

T4: 20 cm x 100 cm x 5cm T3: 10 cm x 100 cm x 2cm T2: 4 cm x 20 cm x 0.4 cm

$$\Box \quad \Omega_n \sim 47 \%$$
$$\Box \quad \Omega_n \sim 40\%$$

	E508	E18 (1 st -step)
$N_{\pi}^{\ tot}$	2T	0.8T
$n_{\pi}/spill$	4×10 ⁶ /4sec	2x10 ⁶ /6sec
d.f.	~1	~0.3
N _{np} (bb)	116	~320
N _{nn} (bb)	43	~60
N _{pp} (bb)	8	~51
N _{np} (nbb)	9	~43
N _{nn} (nbb)	16	~45
N _{NNN}	6	~52

E18 Decay Counter pair nucleon detection efficiency

Technical Issues; High rate capabilities of Beam line detectors.

- Original run;
 - High Beam intensity;

~5x10⁶ π^+/s (~10⁷ $\pi^+/2s(spill)$)

- To meet this high beam intensity,
 - BDC(1-4); 1/1/3/3 mm wire spacing.
 - BDC4 needs further consideration.
 - SDC(1,2) ; 1mm chambers.(Osaka coll.)

In '10 autumn run, all beamline detectors (BDC, SDC) were working fine with
 1×10⁶ π/2s spill(10% d.f.) beam, which corresponds to

- ~5×10⁶ π^+ /s (100% d.f.) = 10⁷ π^+ /spill
- ~1.5x10⁶ π^+ /s (30% d.f.)= 3x10⁶ π^+ /spill

• All SKS detectors are ready except A(erogel)C, for which a new wider acceptance AC will be installed by the Osaka collaboration in this month.

Neutron random background; <u>E508 Neutral particle TOF spectrum</u>

~2% nn background

Neutron Backgrond

	E508	E18 org	E18(1 st -step)
Instant beam rate	4M/1.8s =2.2 M/s (* df~1.0)	10M/1.8s=5.5 M/s (* df~1.0)	2M/(2×0.3)s=3.3 M/s (* df~0.3)
n det. rate	1	1.8×5/2	1.8×3/2
nn random bg	1	(1.8x5/2) ²	(1.8×3/2) ²
nn Yields	1	1.8 ² ×5/2	1.8 ² ×3/2
Y _B /Y _{nn}	0.02	0.02x5/2=0.05	0.02×3.2 = 0.03
(Y _B /Y _{nn}) _{nbb}	0.02x(13/16)/(16/59) =0.06 (* Y _{nn} (bb/nbb)=43/16)	=0.135 (with improved ϵ (nbb))	0.08 (* with improved ϵ (nbb))

• With 2 M π /spill and df~0.3, we can maintain the instant beam current and the random background rate below those of original E18 proposal. • However, it is important to keep the neutron random background rate below the level of 2-3% of singles neutron. (Need n background check in the area.) • We can maintain the σ_{ba} below 10% level with a similar neutron background.

Trigger rate; A WC counter to reject proton

1 mm thickness Water C.

- $\cdot R_{tot}$ ~270/spill
- · $R_{\pi K}$ ~150/spill
- $\boldsymbol{\cdot}$ Need to maintain $R_{\pi K}$
 - but increase the real K trigger.
- Most of the K trigger was proton.
- $\boldsymbol{\cdot}$ Need to remove p

contamination.

Test Exp. at the e-LINAC of Tohoku Univ.

WC light collected

- N_{pe}=18.6(3"), 5.7(2")
- → This gives 7 pe for K so that an efficient WC counter can be made.
- The incident position and angle dependence varies down to 60%, but acceptable.

Counters	Unit No.	Unit	Total	Purchased	To purchase	Inst.
	(cm)	$\cos t$	$\cos t$			
Neutron	42(96)	4000	168000	168000	0	SNU,
	$(5 \times 20 \times 100)$					Osaka U.
T2	20(20)	2500	50000	0	50000	RIKEN
	$(0.4 \times 4 \times 30)$					
Т3	12(32)	3200	38400	24000	14400	SNU
	$(2 \times 10 \times 100)$					
Veto	8(8)	2800	22400	22400	0	SNU
	$(1 \times 15 \times 100)$					
Water	1(1)		10000	7000	3000	SNU
Ceren. C.	$(1.5 \times 8 \times 15)$					Kyoto U.
Target			5000	0	5000	SNU
Supporter			20000	0	20000	SNU
PDC	0(2)				Repairme	ent
Total			313800	221400	92400	

Collaboration

Institution	Members
Seoul National University	H.C. Bhang
	Seonho Choi
	Kiyoshi Tanida
	M.J. Kim
	C.J. Yoon
RIKEN	Haruhiko Outa
Osaka University	Atsushi Sakaguchi
	Suhei Ajimura
	Hiroyuki Noumi
KRISS	Hyeonseo Park
	Jungho Kim
KEK	Takatoshi Toshiyuki
	Yoshinori Sato
Tohoku University	Osamu Hashimoto
	H. Tamura
	S.N. Nakamura
Kyoto University	T. Nagae
Osaka Electrocommunication University	T. Fukuta
JAEA	Pranab K. Saha
Pusan National University	J.K. Ahn
Hanyang University	Y.K. Kim
	B.H. Kang
LNF(INFN)	S. Okada
GSI	Takehiko Saito

Physics Outputs and the Run request and Strategy

- 1. First-run ;
 - total $0.8 \times 10^{12} \pi$ + beam (70 shifts),
 - 3 kW,
 - $2 \times 10^6 \pi / 2 s(spill)$ with d.f.~ 30%.
- 2. Physics Output;
 - The direct and exclusive confirmation of b_{2N} with triple coin and N_{NN} (nbb).
 - A solid confirmation of Γ_{2N} of at least 3-4 σ confidence level.
 - $N_{NNN} \sim 52(6)$, $N_{NN}(nbb) \sim 90(35)$, $N_{pp}(bb) > 50(8)$.
- 3. These results can be published to meet the urgent need of a solid confirmation of 2N-NMWD of the weak decay research community.
- 4. The requirement can be met with a low power beam as low as 3 kW so that it would be a proper experiment in the initial stage of the commissioning. Since the beamline detectors, being developed in E10 experiment, are common to E18, it is preferred to run E18 following E10 spectroscopy experiment.