A test experiment to measure sub-GeV flux in the on-axis direction at the J-PARC neutrino beam

Presented by Takaaki Kajita, for the Bern-Lyon-Tokyo group

Proponents

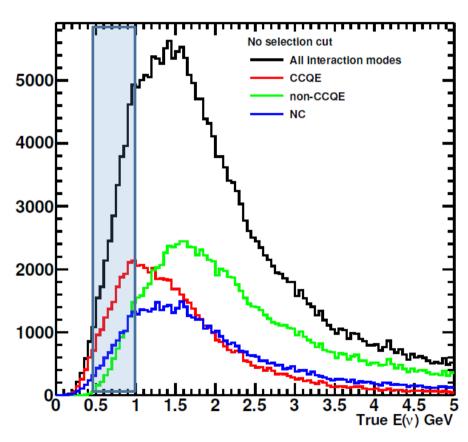
LHEP, University of Bern, Switzerland:

A. Ariga, T. Ariga, F. Bay, A. Ereditato, E. Frank, R. Haenni, F. Juget, I. Kreslo, P. Lutz, R. Mathieu, M. Messina, U. Moser, C. Pistillo, B. Rossi.

IN2P3, IPN Lyon, France:

D. Autiero, B. Carlus, A. Cazes, L. Chaussard, Y. Declais, S. Gardien, C. Girerd, C. Guerin, J. Marteau, E.Pennacchio

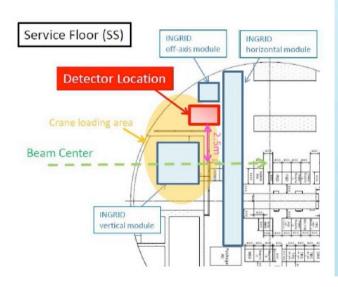
ICRR, University of Tokyo, Japan:

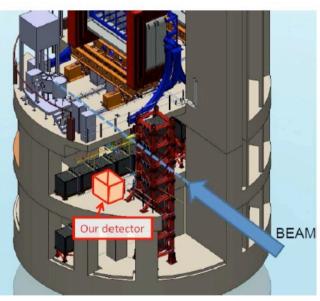

C. Ishihara, H. Kaji, T. Kajita[†], K. Kaneyuki, K. Okumura[‡], Y. Shimizu, N. Tanimoto

† : project leader

 $^{\ddag}$: on-site contact person

Motivation


- Test experiment to measure Sub-GeV neutrino flux with a simple detector system
- Provide information on sub-GeV, on-axis neutrino flux
 - No other existing detector covers this energy region.
- Flux information should be useful for T2K and other future experiments with the J-PARC neutrino beam.

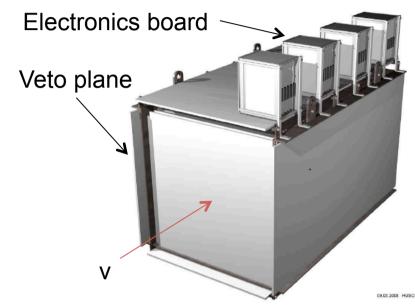


(The on-axis sub-GeV flux contributes more than 50% of the 2.5 degree off-axis sub-GeV flux.)

Location of the detector

ND280 hall, service stage:

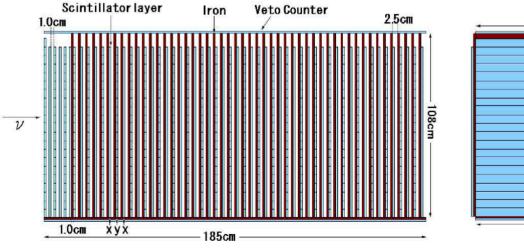
- Candidate location is in front of INGRID.
- The off-axis angle is 0.5 degree.
- The detector can be installed easily with the 10 ton crane of the hall.


INGRID

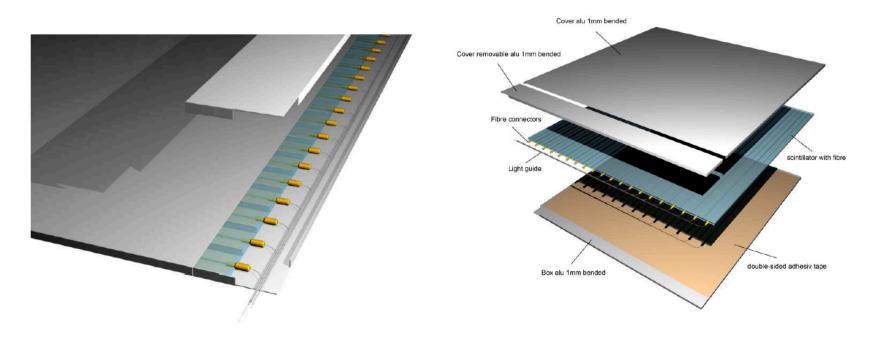
- T2K on-axis v detector
- Sensitive to beam direction
- Covers higher energy region

Detector design

Tracking detector with scintillator bars

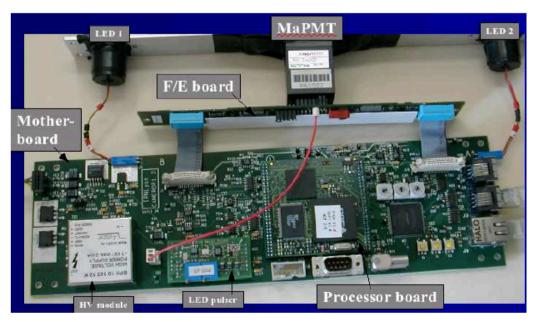

- Designed to detect muons induced by v_{μ} CC interaction
- 108cm×108cm×185cm
- 56 scintillator layers and 50 iron plates (1cm thick)
- Surrounded by 6 veto planes

Veto Counter


108cm

100cm

Counter plane


- Consists of 20 scintillator bars (5×1×100cm³)
- Scintillation light is guided to PMTs by WLS and clear fibers.
- light tightness and mechanical rigidity are provided by double sided scotch strips and aluminum sheets.

DAQ system

- 64 channel multi-anode PMT (H8804MOD-1) is used for photo sensor.
- Followed read-out system (consists of two 32-channel ASICs)
 - Fast ADC with timing resolution of ~10ns
 - LED pulse generator for self-calibration
 - Ether-net connection with the DAQ machine
- This system is used in the OPERA experiment (@Gran Sasso), and well established with their long term operation.

Event selection

- Monte Carlo (Geant 4) simulation is performed to understand the detector response.
 - We generated neutrino interaction data using the on-axis beam flux.
- Following cuts are used to select CC (QE) events:
 - Nhitlayer >=5
 - No VETO hit
 - In fiducial volume
 - Reject single proton track by dE/dx
 - Reject multiple track events
 - $P(\mu$ -assumption) > 250 MeV/c

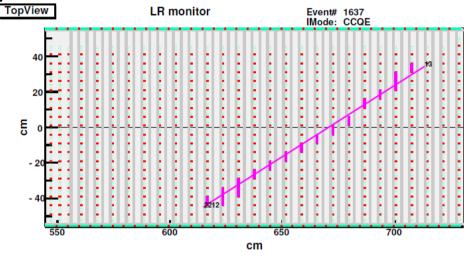
Reject muons from outside

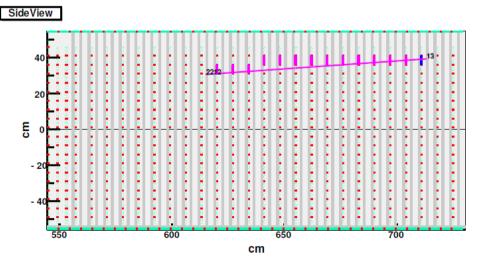
Reject NC interactions

Rejects CC non-QE interactions

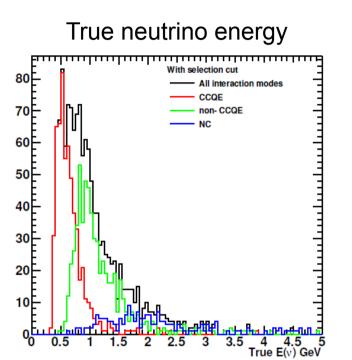
Reject NC interactions

Typical CCQE event

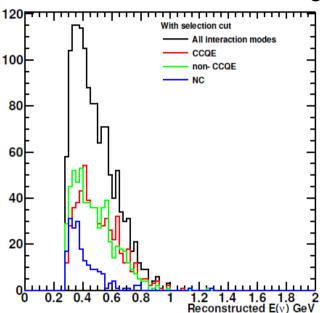

Typical CCQE has only one long track.


TopView

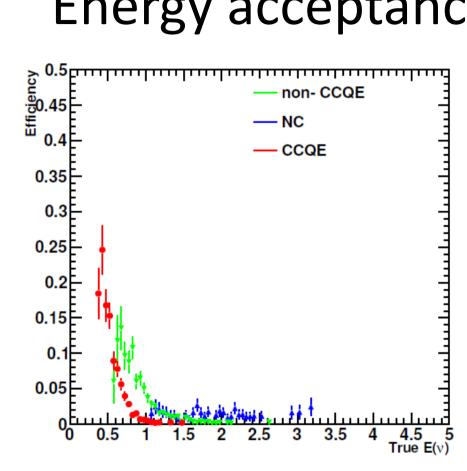
Muon track is shown by pink line.


- Muon momentum is estimated from the number of hit layers.
- Initial neutrino energy, E_v , is determined by the following formula:

$$E_{\nu} = \frac{1}{2} \cdot \frac{2M_{p}E_{\mu} - M_{\mu}^{2}}{M_{p} - E_{\mu} + \sqrt{E_{\mu}^{2} - M_{\mu}^{2} \cdot \cos \theta_{\mu}}}$$



v energy distribution



Reconstructed neutrino energy

- The distributions assume 100kW of beam power and 10⁷ s of beam time.
- NC interactions from high energy neutrinos produce relatively long proton tracks. They are sometimes mis-identified as muons. However, reconstructed neutrino energies (assuming they are muons) are small in that case.
- In the reconstructed energy greater than 0.4 GeV region, most events are CC interaction and CC QE/non-QE ratio is ~ 1.

Energy acceptance

Reasonable acceptance for CC QE events below 1 GeV and significant reduction for CC non-QE and NC events above 1 GeV

Expected number of events

	All	CC	CCQE	non-CCQE	NC
No cut	629900	471610	166446	305164	158290
$N_{HitLayer} \geq 5$	418758	365722	125709	240013	53036
No veto hit	57107	36505	11237	25268	20602
In FV	17614	10521	3191	7330	7093
Proton track	7144	5416	2054	3363	1728
Multi track	4127	3348	1578	1770	779
$P_{\mu} > 250 \mathrm{MeV}$	3412	2929	1431	1497	483
Efficiency	0.0081	0.0080	0.0114	0.0062	0.0091
Fraction	1.	0.8584	0.4194	0.4387	0.1416

- About 3400 events expected after reduction with 100 kW proton beam and 10⁷ seconds of the running time
- Sufficient statistics (~ 2 % accuracy, statistical) will be obtained to measure the low energy neutrino events
- CC purity: 86 %

Schedule

Jan	Feb	March	April	May	June	July	Aug.
		Prepare	necessary r	naterials			
		$\langle \rangle$		scintillator :		rn	
				Assemble	e counter pla	ate	
					•	: Bern → IC	
			Assemble	e detector			
			Rea	ndy to install	@J-PARC		

Beam time request

- We request 10⁷ seconds of beam time under the assumption of 100 kW beam power.
- Obviously, if the beam power would be higher, the exposure time will be reduced accordingly.

Conclusion

- We propose a test experiment to measure low energy neutrino events with the J-PARC neutrino beam with a rather simple detector.
- The requested beam time is 10⁷ seconds for the 100 kW beam power.
- The detector can be ready to installed in the summer 2010 in the ND280 pit.