Formation of K-nucleus systems at J-PARC

J. Yamagata (Nara Women's Univ.)

H. Nagahiro (RCNP, Osaka Univ.)D. Jido (YITP, Kyoto Univ.)S. Hirenzaki (Nara Women's Univ.)

Introduction

• Kaonic Nuclei

Many Subcomponents Large Widths

- -- ¹²C, ¹⁶O
 Theor. : Yamagata, Nagahiro, Hirenzaki(Structure, Reaction) : Mares, Friedman, Gal (Structure)
 Exp. : Kishimoto, Hayakawa -- Osaka Group
 -- ⁴He
 Theor. : Akaishi, Yamazaki, Dote (Structure)
 Exp. : Iwasaki, Suzuki -- RIKEN Group
- → It seems <u>difficult to observe clear signals</u> for these kaonic nuclei.

J-PARC

- ³He(K⁻,n)K⁻pp J-PARC E15, Iwasaki, Nagae
 -- Signals for kaonic nuclei ? (even with large width?) (only a few subcomponents)
- Many Theoretical Studies for K⁻pp bound states.

We want to know the shapes of the spectra for the formation of KNN states!!

In today's talk...

1. Light Kaonic Nuclei (KNN systems) Yamagata, Nagahiro, Okumura, Hirenzaki, PTP114(05)301 ; Errata 114(05)905 Yamagata, Nagahiro, Hirenzaki, PRC74(06)014604 Yamagata, Hirenzaki, EPJA31(07)255 Yamagata, Nagahiro, Kimura, Hirenzaki PRC76(07)045204

PLB 652(07)262

Main Part

- (Bound states by solving Klein-Gordon equation) T. Koike, T. Harada ,
- Formation spectra in Green's function method

 $\mathbf{O}\overline{\mathbf{K}}$ - NN optical potential based on chiral amplitudes

 \circ Consider all possible two nucleons and \overline{K} systems

 \mathbf{O} Include the contributions from $\mathbf{K}^{\mathbf{0}}$ initiated process.

³He(
$$K^-, n$$
) ³He(K^-, p) $t(K^-, n)$ K^-pn
 \bar{K}^0pn \bar{K}^0nn \bar{K}^0nn \bar{K}^0nn

We show the missing mass spectra accompanied by the particle emissions due to Kbar absorption in nucleus.

2. Deeply bound kaonic atoms

Our theoretical tools

• Bound state by solving Klein-Gordon equation selfconsistent with energy

E. Oset and L. L. Salcedo, J. Comput. Phys. 57 (85) 361

 $[-\vec{\nabla}^2 + \mu^2 + 2\mu V_{\text{opt}}(r,\omega)]\phi(\vec{r}) = [\omega - V_{\text{coul}}(r)]^2\phi(\vec{r})$

• Formation spectra in Green's function method

O. Morimatsu, K. Yazaki, NPA435(85)727, NPA483(88)493

$$\frac{d^2\sigma}{dEd\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\bar{K}N\to N\bar{K}} \sum_{\alpha} -\frac{1}{\pi} \operatorname{Im} \int d\vec{r} d\vec{r}' f_{\alpha}^*(\vec{r}') G(E;\vec{r}',\vec{r}) f_{\alpha}(\vec{r})$$

$$(rac{d\sigma}{d\Omega})_{ar{K}N
ightarrow Nar{K}}$$
 : Elementary cross section (Exp. data)

 $G(E; \vec{r'}, \vec{r})$: Green function for K interacting with the nucleus

1-2. Results -- Formation Spectra

1-4. Results -- Conversion Part

1-5. Comments on our calculation for KNN

- We don't calculate structure as few body systems. (Optical potential description by Tp approximation for very light system)
- We assume density distribution of NN system.
 (improvements are required)
- We need to evaluate 2 body absorption correctly.
 Chiral Unitary Model T(ρ=0,E) --- only 1 body absorption
- 2. Deeply bound kaonic atoms
 - the Coulomb assisted kaon-nucleus bound systems
 - The lightly bound atomic states have been observed with X-ray spectroscopy.

(ex. Iio san's talk (Hayano Group))

• BUT, the deeply bound states have never been observed yet !!

So, we calculated the formation spectra of kaonic atoms in (K-,p) reactions.

2. Deeply bound Kaonic Atoms

J. Yamagata, H. Nagahiro, R. Kimura and S. Hirenzaki, Phys. Rev. C76(07)045204

* The expected spectra show interesting structures with clear signals.

* The structures are very **robust**.

➔ Experimentally confirming the predicted structures is of great importance!!

* If an experiment with enough resolution did not find the predicted structures,

→ this would cast serious doubt on the validity of the potentials which reproduce the existing lightly bound atomic data.

1-6. Summary

- We calculated various KNN systems.
 - -- Some bound states exist in complex E plane
 - -- We may observe the small structures at bound region.
- We also considered **K⁰pn** state in addition to **K⁻pp** state in ³He(K-,n) reaction.
- We expect clearer signals in the conversion part.
 (Especially πΣ emission channels!!)
- We need to observe the emitted particles after kaon absorption in addition to forward nucleon in (K-,n) reactions.

• Deeply bound kaonic atoms

- Not simple peak structure. But dips, \\shapes etc.
- ${\circ}\,$ The experimental investigations are very important !!
 - \rightarrow 'Robust prediction!' while 'Insensitive?'
 - \rightarrow Experimentally confirming the predicted structures is

of great importance!!