From \bar{K} bound states to \bar{K} condensation? Avraham Gal

Racah Institute of Physics, Hebrew University, Jerusalem

Based on D. Gazda, E. Friedman, A. Gal, J. Mareš : \bar{K} and multi- \bar{K} nuclei, PRC **76**, 055204 (2007) Multi- \bar{K} nuclei and kaon condensation, arXiv:0801.3335

no accepted \$\overline{K}\$ bound states at present (KEK, Frascati)
chance for narrow states with \$B_{\overline{K}}\$ ~ 100 - 200 MeV?
is \$\overline{K}\$ condensation limiting case of \$\overline{K}\$ bound states?
\$\overline{K}\$ cond on Earth (lab) or in Heaven (neutron stars)?

W. Weise, R. Hartle, arXiv:0801.1467, NPA (in press) Forward F_{K^-p} in SU(3) chiral $\overline{K}N - \pi Y$ model from BNW, EPJA 25 (2005) 79 $\rightarrow V_{\overline{K}}(\rho_0) \sim -100$ MeV

J. Schaffner-Bielich, NPA (in press) updated arXiv:astro-ph/0703113 Neutron-star composition with density, disregarding \bar{K} condensation

T. Hyodo, W. Weise, arXiv:0712.1613

Critique of phenomenological K^- potential phen: T. Yamazaki, Y. Akaishi, PRC 76 (2007) 045201 Quasibound $\bar{K}N$ state: at 1405 MeV (phen) or at 1420 MeV (chiral)?

T. Hyodo, W. Weise, arXiv:0712.1613 $\Lambda(1405)$ shape in $\pi - \Sigma$ spectrum, calculated in chiral models Do chiral models work well?

N. Barnea, E. Friedman, Phys. Rev. C 75 (2007) 022202 Example of K^- -Ni (real) potentials in different atomic data fits χ^2 with respect to 65 data points across the periodic table K^- atom review: E. Friedman, A. Gal, Phys. Rep. 452 (2007) 89

E. Friedman, A. Gal, Phys. Rep. 452 (2007) 89Deep potential (F) favored over shallow chiral potential

N. Barnea, E. Friedman, Phys. Rev. C 75 (2007) 022202 Functional Derivative analysis $[\eta = (r - R)/a]$ Deep potential (F) is determined inside the nucleus

RMF for nucleons and \overline{K} mesons $\mathcal{L}_{K} = (\mathcal{D}_{\mu}K)^{\dagger} (\mathcal{D}^{\mu}K) - m_{K}^{2}K^{\dagger}K + g_{\sigma K}m_{K}K^{\dagger}K \sigma$

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} + \mathrm{i} \, g_{\omega K} \, \omega_{\mu} + \mathrm{i} \, g_{\rho K} \, \vec{\tau} \cdot \vec{\rho}_{\mu} + \mathrm{i} \, g_{\phi K} \, \phi_{\mu} + \mathrm{i} \, e \, \frac{1}{2} (1 + \tau_3) A_{\mu}$$

$$\left(-\nabla^2 - E_{K^-}^2 + m_K^2 + \Pi_{K^-}\right)K^- = 0$$

$$\operatorname{Re} \Pi_{K^{-}} = -g_{\sigma K} m_{K} \sigma_{0} - 2E_{K^{-}} (g_{\omega K} \omega_{0} + g_{\rho K} \rho_{0} + g_{\phi K} \phi_{0} + eA_{0}) - (\cdots)^{2}$$

Im Π_{K^-} from K^- atom fit, considering decay phase space

$$(-\nabla^2 + m_{\sigma}^2)\sigma_0 = +g_{\sigma N}\rho_s + g_2\sigma_0^2 - g_3\sigma_0^3 + g_{\sigma K}m_K K^- K^+$$

$$(-\nabla^2 + m_{\omega}^2)\omega_0 = +g_{\omega N}\rho_v - g_{\omega K}\rho_{K^-}$$

$$(-\nabla^2 + m_{\rho}^2)\rho_0 = +g_{\rho N}\rho_3 - g_{\rho K}\rho_{K^-} \qquad (-\nabla^2 + m_{\phi}^2)\phi_0 = -g_{\phi K}\rho_{K^-}$$

$$2g_{\omega K} = \sqrt{2} g_{\phi K} = 2 g_{\rho K} = g_{\rho \pi} = 6.04$$
 F-type SU(3) (TW)

J. Mareš, E. Friedman, A. Gal, NPA 770 (2006) 84

 B_{K^-} and Γ_{K^-} in RMF calculations: static - empty, dynamical - solid

Average nuclear density $\overline{\rho}$ for a 1s K^- bound state

Localized effect of a $1s K^-$ deeply bound state

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 76 (2007) 055204 Dependence on $(\bar{K}N \to \pi\Sigma) : (\bar{K}NN \to \Sigma N)$ Ratio 0.8 : 0.2 is observed in capture at rest

Conclusion: $\Gamma_{\bar{K}} > 50$ MeV for deeply bound states

Saturation of $B_{\bar{K}}$ in ¹⁶O with number of \bar{K} mesons (κ)

Saturation of ¹⁶O nuclear density with κ , for $B_{1\bar{K}} = 100 \text{ MeV}$

D. Gazda, E. Friedman, A. Gal, J. Mareš, arXiv:0801.3335 $B_{\bar{K}}$ contributions in ¹⁶O: substantial ρ and ϕ repulsion for $\bar{K}\bar{K}$ pairs

Saturation of $B_{\bar{K}}$ in ⁴⁰Ca for various RMF nuclear models

Saturation of ⁴⁰Ca nuclear density with κ , for $B_{1\bar{K}} = 100$ MeV

Saturation of $B_{\bar{K}}$ in ²⁰⁸Pb with κ , far away from \bar{K} condensation $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320 \text{ MeV}$

Saturation of $^{208}\mathrm{Pb}$ nuclear density with $\kappa,$ for $B_{1\bar{K}}=100~\mathrm{MeV}$

 $1s K^{-}$ effective mass in ²⁰⁸Pb + κK^{-} , for $B_{1\bar{K}} = 100 \text{ MeV}$

Exotic \overline{K} structures, with unbound nuclear cores onset of binding: K^-pp and \overline{K}^0nn

Table 1: Binding energies (B) and widths (Γ) calculated for K^-pp (in MeV) exclusive of $\bar{K}NN \to YN$ contributions

	single channel		coupled channels		experiment
	ATMS $[1]$	AMD $[2]$	Faddeev [3]	Faddeev [4]	FINUDA $[5]$
В	48	16-22	50-70	60-95	$115 \pm 6 \pm 4$
Γ	61	40-70	90-110	45-80	$67 \pm 14 \pm 3$

- 1. T. Yamazaki, Y. Akaishi, PLB 535 (2002) 70
- 2. A. Doté, T. Hyodo, W. Weise, NPA (in press) arXiv:0802.0238
- 3. N.V. Shevchenko, A. Gal, J. Mareš, PRL 98 (2007) 082301; PRC 76 (2007) 044004
- 4. Y. Ikeda, T. Sato, PRC **76** (2007) 035203
- 5. M. Agnello et al., PRL 94 (2005) 212303

RMF extension of K^-pp calculations

Exotic neutrons-only nuclei stabilized by \overline{K}^0 mesons

Saturation of nuclear density in exotic multi- \bar{K} states

Polarization of nuclear cores: neutron single-particle energies

Metastability of exotic neutrons-only multi- \overline{K}^0 states

Summary

- Large widths, $\Gamma_{\overline{K}} > 50$ MeV, obscure search for single- \overline{K} quasibound nuclear states. Focus searches in light systems
- \overline{K} separation energy saturates in multi- \overline{K} nuclei, and probably also in multi- \overline{K} hypernuclei. \overline{K} condensation unlikely in self-bound matter on Earth
- \overline{K} condensation in neutron stars is uncertain