An experimental search for strange multibaryonic states via (stopped K⁻, YN) reactions

- 1. Introduction
- 2. Experiment
- 3. *A N* correlations
- 4. ΣN correlations
- 5. Discussion and prospect

Takatoshi Suzuki (RIKEN Nishina Center) for KEK-PS E549 collaboration

KEK-PS E549 collaboration

H. Bhang, J. Chiba, S. Choi, Y. Fukuda, T. Hanaki,
R. S. Hayano, M. Iio, T. Ishikawa, S. Ishimoto,
T. Ishiwatari, K. Itahashi, M. Iwai, M. Iwasaki,
P. Kienle, J. H. Kim, Y. Matsuda, H. Ohnishi,
S. Okada, H. Outa, M. Sato, S. Suzuki, T. Suzuki,
D. Tomono, E. Widmann, T. Yamazaki, H. Yim

Introduction - <u>Does deeply bound kaonic nuclear states</u> with narrow widths exist ?

- -> No, they don't! They must be shallow and broad
- -> Yes, they do.
- 1) T. Kishimoto (PRL 83 4701 (1999))
- BNL-AGS E930 (T. Kishimoto *et. al.,* 2001) with ¹⁶O(in-flight K⁻,n)
- -> narrow bound state(s)?(NPA 754 383c (2005))
- KEK-PS E548 (T. Kishimoto et. al., 2005) with ¹⁶O(in-flight K⁻,N) -> no narrow sates !
- 2) Y. Akaishi and T. Yamazaki (PRC 65 044005 (2002), PLB 535 70 (2002))
- KEK-PS E471 (M. Iwasaki et. al., 2002/2003) with ⁴He(stopped K⁻,N)
- -> observation of "strange tribaryons" (nucl-ex/0310018,PLB 597 263 (2004))
- FINUDA (T. Bressani et. al., 2003/2004) with ^{6/7}Li/ ¹²C(stopped K⁻,Λp)
- -> evidence for deeply bound ppK⁻ state(PRL 94 210323 (2005)) KEK-PS E549/570 (M. Iwasaki *et. al.*/R. S. Hayano *et. al.*, 2005) with ⁴He(stopped K⁻,N) -> no narrow sates ! (PLB 659 107 (2008)) Broad states? -> This talk

Original aim of the Experiment

(semi-)Inclusive missing mass spectroscopy of $(K_{bar}NNN)_{Z=0,T=1}$: S⁰ / $(K_{bar}NNN)_{Z=1,T=0,1}$: S⁺ via $K^{-}_{stopped} + {}^{4}He \rightarrow p + S^{0}_{T=1} \rightarrow M.$ Sato, PLB 659 107 $-> n + S^{+}_{T=0,1} \rightarrow H.$ Yim, under preparation $S^{+}_{T=0,1} \rightarrow Y(\pi)NN$ $Y \rightarrow \pi N$

Very strict upper limits for narrow(Γ< ~40 MeV/c²) states Insensitive to broad (Γ> ~40 MeV/c²) states

Semi-exclusive studies

Semi-exclusive missing mass spectroscopy via This talk. $K_{\text{stopped}}^{-} + {}^{4}\text{He} \rightarrow N + {}^{3}\text{S}^{0/+}_{T=0.1}$ $K^{-}_{stopped} + {}^{4}\text{He} \rightarrow N + {}^{3}S^{0/+}_{T=0,1} \qquad (Y:\Lambda \rightarrow arXiv:0711.4943)$ ${}^{3}S^{0/+}_{T=0,1} \rightarrow Y(\pi)NN$ Small statistics, but well resolved final states. Dibaryon? $K^{-}_{stopped} + {}^{4}He \rightarrow {}^{2}S^{0/+}_{T=1/2,3/2} + N + N$ $^{2}S^{0/+}_{T=1/2,3/2} > YN$ Inclusive measurement for $K_{stopped} + {}^{4}He \rightarrow {}^{2}S^{0}_{T=1/2} + d$ Semi-exclusive measurement for $K^{-}_{stopped} + {}^{4}He \rightarrow {}^{2}S^{0}_{T=1/2} + d$ $^{2}S^{0}_{T=1/2} \rightarrow Yn$ $-> {}^{3}S^{+}_{T=0.1} + n$ $^{3}S^{+}_{T=0.1} -> Yd$ Y:Λ->PRC **76** 06820

Measurement

 E549
 June 2005
 95M stopped K⁻

 E570-1
 October 2005
 108M stopped K⁻

 E570-2
 December 2005
 42M stopped K⁻

⁴He(stopped K⁻, Λ N) missing mass

Regardless of the medium states,

$$\begin{array}{l} \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} \ -> \Lambda + \mathsf{N} + \mathsf{N} + \mathsf{N} + \pi \\ \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} \ -> \Lambda + \mathsf{N} + \mathsf{N} + \mathsf{N} \\ \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} \ -> \Lambda + \mathsf{n} + \mathsf{d} \end{array}$$

final states can be separated by ${}^{4}\text{He}(K^{-}_{\text{stopped}}, \Lambda N)$ missing mass,

$$M_{NN*} = \sqrt{(p_{init} - p_{\Lambda} - p_N)^2},$$

which is actually internal energy of nuclear residual. Internal energy can give important information to interpret observed strength. ΛN invariant mass VS ⁴He(stopped K⁻, ΛN) missing mass

ΛN invariant mass VS ⁴He(stopped K⁻, ΛN) missing mass

A momentum VS N momentum

Discussion of a_p/a_n (2-nucleon absorption) components

Clear observation of "two"-nucleon absorption,

 $\begin{array}{l} \textit{K}^{-} `pp' |_{l=1,S=0} \rightarrow \textit{Ap} (a_{p} \sim 0.3\%/\textit{K}^{-}_{stopped}) \\ \textit{K}^{-} `pn' |_{l=1,S=0/l=0,S=1} \rightarrow \textit{An} (a_{n} \sim 3\%/\textit{K}^{-}_{stopped}) \end{array}$

Consequences

- 1. Significantly small branch on $\Lambda p(I=0, S=1 \text{ dominance})$.
- 2. **only** ~**30%** of known $\Lambda(\Sigma^0)(pnn)(11.7 + 2.4)\%$ (PRD **1** 1267 (1970)) final states!
- 3. Suppression of

(*K*⁻ [*pp*]_{I=1,S=0})-> Лр

decay mode of strongly bound *K*-*pp* system.

Properties of b_p/b_n components

1. Presence of intense(~70% of Λ NNN final states) (b_p)/(b_n) components.

2. (b_n) could be explained by the elastic re-scattering effect(PRC **74** 025206).

3. Much different $(a_p):(b_p),(a_n):(b_n)$ intensity ratio. -> simultaneous explanation of b_p and b_n by elastic rescattering effect is almost impossible...

4. (b_p) cannot be explained by the re-scattering effect from the spectrum shape.

-> (*b_p*) is extremely peculiar.

Interpretation of b_p component

Possible contibutions to component (b_p) ...

1. Σ branch of "two"-nucleon absorption and successive $\Sigma\Lambda$ conversion process Possible contribution from

 $\begin{array}{ll} K^{-} (NN' \rightarrow \Sigma p) & K^{-} (pp' \rightarrow \Sigma^{0} p) \\ \Sigma (N' \rightarrow \Lambda p) & \Sigma^{0} \rightarrow \Lambda \gamma \end{array}$

2. "three"-nucleon absorption cf. PRC 76 068202) K^{-} (NNN' -> $\Lambda pN \leftarrow Expected brach$ is 0.1% order...

3. ${}^{2}S_{T=1/2}^{+}$ dibaryon (*K*⁻ [*pp*] |=1,S=0) production and its Λp decay

(for ⁶Li + ⁷Li + ¹²C, FINUDA collaboration, PRL **94** (2005) 212303)

 $\begin{aligned} & \mathcal{K}_{\text{stopped}} + {}^{4}\text{He} \rightarrow {}^{2}\text{S}_{T=1/2}^{+} + n + n \\ & {}^{2}\text{S}_{T=1/2}^{+} - > \Lambda + p & \longleftarrow \text{Spin-isospin suppressed...} \\ & 4. {}^{3}\text{S}_{T=1}^{0} \text{ tribaryon production and its } \Lambda \text{nn decay} \\ & \mathcal{K}_{\text{stopped}}^{-} + {}^{4}\text{He} - {}^{3}\text{S}_{T=1}^{0} + p \\ & {}^{3}\text{S}_{T=1}^{0} - > \Lambda + n + n \end{aligned}$

Interpretation of b_n component

Possible contributions to component (b_n) ... 1. Σ branch of "two"-nucleon absorption and successive $\Sigma \Lambda$ Unseen on ΣN spectra. Possible contribution from conversion process **Κ**⁻ 'pn' -> Σ⁰n K^{-} (NN' -> Σn $\Sigma^{0} \rightarrow \Lambda \gamma$ $\Sigma N' \rightarrow \Lambda n$ 2. Elastic re-scattering K^{-} (NN) (NN) -> $\Lambda n(NN)$ K^{-} (NN) (NN) -> $\Lambda n(NN)$ $\Lambda(n) \rightarrow \Lambda n$ $n(N) \rightarrow nN$ 3. ${}^{2}S_{T=1/2}^{0}$ dibaryon (*K*⁻ [*pn*] $_{I=0,S=1}$) production and its Λn decay $K_{\text{stopped}} + {}^{4}\text{He} \rightarrow {}^{2}\text{S}{}^{0}_{\text{T}=1/2} + p + n$ ${}^{2}S_{T=1/2}^{0} \rightarrow A + n$ 4. ${}^{3}S^{+}$ tribaryon production and its Λ pn decay $K_{\text{stopped}} + {}^{4}\text{He} -> {}^{3}\text{S}^{+} + n$ ${}^{3}S^{+} \rightarrow A + p + n$

```
\Sigma^{-}p correlations (1)
```


2NA: ~1 % out of 3.6 +- 0.9 % of Σ⁻ppn/Σ⁻pd final state

 Σ^{-} momentum distribution for non-2NA component is *never explained by elastic rescattering!!!* $K_{\text{stopped}} + {}^{4}\text{He}$ $-> {}^{2}\text{S}^{0}_{\text{T}=1/2} (K^{-}[pn]_{I=0,S=1}) + p + n$ ${}^{2}\text{S}^{0}_{\text{T}=1/2} -> \Sigma^{-} + p$ $-> {}^{3}\text{S}^{0}_{\text{T}=4} + p$

$$^{3}S^{0}_{T=1} + p$$

 $^{3}S^{0}_{T=1} -> \Sigma^{-} + pn/d$

Conclusions and prospects

1. The 2NA process accounts for **only** \sim 30% of non-mesonic Λ branch.

The K⁻ [*pp*] _{I=1,S=0} hypothesis of Λp spectrum (FINUDA interpretation) is *disfavored* by observed spin-isospin property of the 2NA process at 0-energy.
 The remaining ~70% could include the signal of non-mesonic decay of strange multibaryons.

4. Σp correlations suggest ${}^{2}S_{T=1/2}^{0}/{}^{3}S_{T=1}^{0}$ more strongly.

5. All suggested multibaryons have large width or as continuum.

6. Whole spectrum shapes will be examined after acceptance correction (now going on), to discuss the central masses.

7. The (K⁻,N) experiments with A=3/4 targets (cf. J-PARC E15-> *Dr Sakuma's talk*), by which Λ/Σ channels are *exclusively* studied in wide angular/momentum range, are awaited at J-PARC K1.8BR/K1.1.