

When is a Nucleon a Nucleon ? (Medium Effects)

The EMC effect shows that the nuclear medium modifies nucleon structure - measured at high values of momentum transfer (Q²= 2M υ). An assumed consequence of nuclear density effects

Early measurements of K⁺ total cross sections were enhanced, and also interpreted as a manifestation of the nuclear density.

The K⁺ was proposed as a hadronic "replacement" for the electron.

np_08

E. V. Hungerford University of Houston

appropriate for QHD

np_08

University of Houston

K⁺-Nucleus Interaction

Because the Amplitudes are weak and essentially momentum independent one expects the tp approximation for the optical potential to be valid --- $2\epsilon V_{opt}(\mathbf{r}) = -4\pi F_k b_0 \rho(\mathbf{r})$

Implies

 •K⁺ should be sensitive to the Nuclear Volume
•For example, K⁻ much more diffractive -- deeper minimum at lower Q²

E. V. Hungerford University of Houston

K⁺ Scattering Enhancements

ULLOUSION

\mathbf{K}^+

•Scattering from C shows an increase of 36% in the 2-body amplitude – in Ca it is about 64%

•Can be explained by:

Increasing the elementary phase shifts Decrease the effective mass of the exchanged mesons (effective mass varies with density $[1 - \lambda \rho / \rho_0]$) Mesonic Currents

Calculations are not sensitive to common corrections (energy shifts, multiple scattering, etc) Data is limited but there is a consistent discrepancy between data and theory.

•σ_R less model dependent than σ_T •An optical potential is required to extract σ_R from the transmission experimental data •The results are not self-consistent

The results are not self-consistent
Need elastic data to get the optical potential
While a tp approximation should be valid, it appears that potential is repulsive at low density but less so (or attractive) at high density
Energy dependence of K⁺-Li is similar to more complex nuclei
Super ratio removes Energy dependence

 $[\sigma_{R(exp)} / \sigma_{R}(cal)] / [\sigma R(exp) / \sigma R(cal)]$

Meson Exchange is energy dependent

E. V. Hungerford University of Houston

PR C(97)1304 PL B396(97)21 Analysis

•Using a fit to σ_R and σ_T does not produce self consistent results, i.e. optical potentials constructed to fit σ_R and σ_T are not self consistent •Need an increase of ~15% of Im V_{opt} for Li plus an additional 17-25 % of nuclear dependence •A density threshold is added – use a linear density dependence for Im V_{opt} of the form $\alpha = 1 + \beta(\overline{\rho} - \rho_0)\Theta(\overline{\rho} - \rho_0)$ $\rho_0 = 0.088; \beta = 13.0$ ρ the average nuclear density $V_{opt} \rightarrow \text{Re } V_{opt} + \text{Im } V_{opt} \text{ [} \alpha \text{]}$ $\rho_{0} > \overline{\rho}$ (Li) = 0.049

Self consistent fits for σ_R , σ_T , and V_{opt} are possible

University of nouston

K⁺ Ca Quasi Free in Analogy to EM Theory q = 500 MeV/c

•Developed relativistic response in analogy to EM **Scattering** •EM response (Dirac V-A) expressed in **Coulomb/Transverse – Coulomb quenched** •4-vector current-current formulation for K⁺ and IA for nuclear response •Nuclear current obtained from the Walecka model with ρ , ω , σ exchange •Relativistic RPA applied to get the coherent nuclear response •EM quenching due to the polarization of Nucleon sea – relativistic effect •K⁺ quenching is small and sensitive to cancellation of kinematics and Relativistic RPA •Still need some renormalization so A_{eff}(exp) is used but shape is correct

> E. V. Hungerford University of Houston

K⁺ Ca Quasi Free in Analogy to EM Theory q = 500 MeV/c

A Possible Round of New Experiments

Previous Experimental Parameters

•K⁺ Momentum – 500 - 800 MeV/c •K⁺ flux – 3 x 10^5 s⁻¹ instantaneous; 0.5 x 10^5 s⁻¹ avg $\bullet \pi/K = 1$ •At 500 Mev/c $\beta\gamma c\tau = 3.8m - Survival 0.12$ at 8m •Acceptance – 15% •Beam Dimensions – 8 x 3 cm² - dispersed •Targets – Mostly Natural 2-4 g/cm² • $\Delta E - 3 - 4$ MeV (FWHM) • $\Delta \theta - 2 - 4$ Deg •PID especially for pions and protons Attention to Normalizations •Dominated by systematics – 15% E. V. Hungerford **University of Houston**

Conclusions

•Reaction, total, elastic, inelastic, quasi-free all seem to have the same problem(s) •While it appears that the issue is related to nuclear density, a simple, direct dependence does not seem to work •The data seem to indicate an increase in the Im V_{ont} with perhaps a more attractive real component •Last review [NPA639(98)485c] suggests that there are possible "missing" medium effects in theory •Final paper in response to a possible Θ^+ -Nuclear density might enhance $K^+ nN \rightarrow \Theta N$?? [PRL 94(05)072301]

Have we asked the right questions ?

We need more data and more inspired

University of Houston

