Spectroscopic studies of S = -2 systems

Kiyoshi Tanida (Kyoto Univ.) 06 Mar. 2008 NP08@Mito

Hyper-nuclear chart

Physics Motivation

- A doorway to the multistrangeness system
- Very dynamic system?
 - Large baryon mixing?
 Inversely proportional to mass difference.
 - H dibaryon as a mixed state of $\Lambda\Lambda$ - Ξ N- $\Sigma\Sigma$?
- Little is known so far

 → Main motivation of
 the J-PARC

Approved experiments

----- J-PARC PAC Approval summary -----

		(Co-) Spokespersons	Affiliation(*)	Title of the experiment	Approval status	Slow Dev12	line priority
P01		V. Sumachev	Petersburg Nulear Physics Institute	Proposal on measurements of the spin rotation parameters A and R at the J-PARC in the resonance region of $\pi\text{-N}$ elastic scattering	Rejected	bujii	bayr rriorrey
P02	Lol	P. Aslanyan	Laboratory for High Energy, JINR	Study of Exotic Multiquark States with Λ -Hyperons and K $^0{}_{ m S}$ Meson Systems at JPARC	-		
P03		K. Tanida	Kyoto U	Measurement of X rays from B ⁻ Atom	Stage 1		EO3
P04		J. C. Peng; S. Sawada	U.of Illinois at Urbana-Champaign; KEK	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	Deferred		
P05		T. Nagae	KEK	Spectroscopic Study of E-Hypernucleus, ¹² mBe, via the ¹² C(K ⁻ , K ⁺) Reaction	Stage 2	00,1	<u>LE05</u>
P06		J. Imazato	KEK	Measurement of T-violating Transverse Muon Polarization in K $^* \rightarrow \pi^0 \mu^* \nu$ Decays	Stage 1		
P07		K. Imai, K. Nakazawa, H. Tamura	Kyoto U., Gifu U., Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 1 🚽		E07
P08		A. Krutenkova	ITEP	Pion double charge exchange on oxygen at J-PARC	-		
P09	Lol	T. Nakano	RCNP, Osaka U	Study of Exotic Hadrons with S=+1 and Rare Decay K $^* \to \pi^* v~v$ bar with Low-momentum Kaon Beam at J-PARC	-		
P10		A. Sakaguchi	Osaka U	Study on A-Hypernuclei with the Charge-Exchange Reactions	Deferred		
P11		K.Nishikawa	KEK	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2		
P12	Lol	S. Choi	Seoul National University	Study of Parton Distribution Function of Mesons via Drell-Yan Process at J-PARC at High-p beamline	-		
P13		T. Tamura	Tohoku U.	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Payl	2
P14		T. Yamanaka	Osaka University	Proposal for $K_L \rightarrow \pi^0 v v$ -bar Experiment at J-PARC	Stage 1		
P15		M. Iwasaki, T. Nagae	RIKEN, KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3He(K-, n) reaction	Stage 1	Dayi	
P16		S. Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Deferred		
P17		R. Hayano, H. Outa	U. Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 1	Dayı	
P18		H. Bhang, H. Outa, H. Park	SNU, RIKEN, KRISS	Coincidence Measurement of the Weak Decay of ¹² C and the three-body weak interaction process	Deferred		
P19		M. Naruki	RIKEN	High-resolution Search for ⊖ [*] Pentaquark in πp → KX Reactions	Stage1	Day1	
P20	Lol	Y. Kuno	Osaka U	An Experimental Search for μ [−] −e [−] Conversion at Sensitivity of 10 ⁻¹⁸ with a High Intense Muon Source, PRISM	-		

Letter of Intent No presentation this time Experiment at the fast extraction beam Experiment at the third extraction beam

: Affiliation of the spokespersons

3 experiments approved for S=-2 nucl. phys.

Approved experiments

E03: Measurement of X rays from Ξ^- atom Spokesperson – K. Tanida (Kyoto) E05: Spectroscopic study of Ξ -hypernucleus, ${}^{12}_{\Xi}Be$, via the ${}^{12}C(K^-,K^+)$ reaction (Day 1 – 1st priority) Spokesperson – T. Nagae (Kyoto) E07: Systematic study of double strangeness system with an emulsion-counter hybrid method Spokespersons – K. Imai (Kyoto) K. Nakazawa (Gifu) H. Tamura (Tohoku)

3 experiments approved for S=-2 nucl. phys.

Missing mass spectroscopy of ${}^{12}C(K^-,K^+)X \rightarrow {}^{12}_{\Xi}Be, {}^{12}_{\Lambda\Lambda}Be$

1.8 GeV/c K⁻ beam

high intensity 1.4x10⁶ K⁻ /spill (Phase-1)

high purity $K^-/\pi^- \sim 6.9$

Importance of Ξ systems

- Valuable information on ΞN (effective) interaction
 - e.g., How strong $\Xi N \rightarrow \Lambda \Lambda$ (and thus $\Xi N \cdot \Lambda \Lambda$ mixing) is?
 - Relevant to the existence of H dibaryon
 - ΞN component in $\Lambda\Lambda$ -hypernuclei
 - Exchange interaction is prohibited in one-meson exchange models
- How about A dependence?
- Impact on neutron stars
 - Does Ξ⁻ play significant role in neutron stars because of its negative charge?
 - Σ^- was supposed to be important, but its interaction with neutron matter is found to be strongly repulsive.

ΞN interaction model and ΞA optical potential

Model	Т	¹ S ₀	³ S ₁	¹ P ₁	³ P ₀	³ P ₁	³ P ₂	U_{Ξ}	Γ_{Ξ}
NHC-D	0	-2.6	0.1	-2.1	-0.2	-0.7	-1.9		
	1	-3.2	-2.3	-3.0	-0.0	-3.1	-6.3	-25.2	0.9
Ehime	0	-0.9	-0.5	-1.0	0.3	-2.4	-0.7		
	1	-1.3	-8.6	-0.8	-0.4	-1.7	-4.2	-22.3	0.5
ESCO4d*	0	6.3	-18.4	1.2	1.5	-1.3	-1.9		
	1	7.2	-1.7	-0.8	- <mark>0.5</mark>	-1.2	-2.8	-12.1	12.7

- One boson exchange (NHC-D, Ehime)
 - strong attraction in odd states \rightarrow strong A dependence
- ESC04d*
 - strong attraction in ${}^{3}S_{1}(T=0)$

SksPlus Spectrometer

- 95° total bend
- ~7m flight path
- $\Delta x=0.3 \text{ mm} (\text{RMS})$

high resolution: $\Delta E \sim 3 \text{ MeV}$

¹²C(K⁻,K⁺)¹²_ΞBe spectra calculated by W.S. potential

		V [±] ₀ [MeV]			
states		-24	-20	-16	-12
s-state		[nb/s			
$0p_{3/2} \rightarrow 0s_{1/2}$	1-	215	168	123	81
p-states				[n	b/sr]
0p _{3/2} →0p _{3/2}	0+	29	20	_	_
	2+	164	103	_	_
0p _{3/2} →0p1 _{/2}	2+	152	93	_	_
sum		345	216	—	—

K.Ikeda, et al, Prog. Theor. Phys. 91 (1994) 747 ; Y.Yamamoto, et al, Prog. Theor. Phys. Suppl. 117 (1994) 281

E03 X-ray spectroscopy of Ξ atom

- The first measurement of X rays from Ξ -atom
 - Gives direct information on the ΞA optical potential
- Produce Ξ⁻ by the Fe(K⁻,K⁺) reaction, make it stop in the target, and measure X rays.

- Aiming at establishing the experimental method
- Possibility for double- $\Lambda \gamma$ -ray

Successfully used for π^- , K⁻, \overline{p} , and Σ^-

Experimental setup

- Long used at KEK-PS K2 beamline (E373, E522, ...)
 - Minor modification is necessary to accommodate high rate.
- Large acceptance (~0.2 sr)

X-ray detector

• Hyperball-J

- 40 Ge detectors
- PWO anti-Compton
- Detection efficiency
 - 16% at 284 keV
- High-rate capability
 < 50% deadtime
- Calibration
 - In-beam, frequent
 - Accuracy ~ 0.05 keV
- Resolution
 - ~2 keV (FWHM)

Yield & sensitivity estimation

- Total number of K⁻: 1.0x10¹² for 800 hours.
- Yield of Ξ
 - production: 3.7×10^6
 - stopped: 7.5×10^5
- X-ray yield: 2500 for $n=6\rightarrow 5$ transition
 - 7200 for n=7→6
- Expected sensitivity
 - Energy shift: -0.05 keV (systematic dominant)
 - → Good for expected shift (~1 keV, 4.4 keV by Koike)
 - < 5% accuracy for optical potential depth
 - Width: directly measurable down to ~ 1 keV
 - X-ray yield gives additional (indirect) information on absorption potential.

Expected X-ray spectrum

Expected X-ray spectrum(2)

shift & width 4 keV

E07 $\Lambda\Lambda$ Hypernuclei

- Hybrid emulsion method
 - Production of Ξ^- by the (K⁻,K⁺) reaction is tagged by counters (almost the same as E03)
 - Then Ξ^- is tracked down in emulsion for possible production of double- Λ hypernuclei.
- Goal: 10000 stopped Ξ⁻ on emulsion
 100 or more double-Λ hypernuclei events
 10 species of double-Λ hypernuclei
 - \rightarrow Chart of double- Λ hypernuclei

Setup around the target

Production of $\Lambda\Lambda$ hypernuclei

Example event in emulsion

Dec. 19. 2001

- Track length, thickness
 PID/energy
- Presume what are produced at each vertex
 - Then check consistency
 - Unique assignment is sometimes possible

• Calculate binding energy $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} - 2B_{\Lambda}$ gives net $\Lambda\Lambda$ interaction

Systematics of $\Lambda\Lambda$ binding energy

- $\Delta B_{\Lambda\Lambda}$ may different for each nucleus
 - For example by hyperon mixing effect

Summary & perspective

- Nuclei with S=-2 at J-PARC
 - Main topic of strangeness nuclear physics
- 3 experiments are approved
 - Spectroscopy of Ξ hypernucleus (E05)
 - X-ray spectroscopy of Ξ atom (E03)
 - \rightarrow Ξ A optical potential, Ξ N interaction
 - attractive or repulsive? how strong is $\Xi N \rightarrow \Lambda \Lambda$?
 - Hybrid emulsion study of double Λ hypernuclei (E07)
 → ΛΛ interaction in nuclei, S=-2 hypernuclear chart evidence for ΛΛ-ΞΝ mixing seen in ΛΛ hypernuclei?
- More to come
 - E05 & E03 will do systematic measurements
 - γ -ray spectroscopy of $\Lambda\Lambda$ -hypernuclei may be possible

Collaboration list: E07

Systematic Study of Double Strangeness System with an Emulsion-Counter Hybrid Method

Kyoto: E.Hayata, M.Hayata, M.Hirose, K.Imai, S.Kamigaito, NAGARA event (KEK-E373) N.Saito, K.Tanida, M.Togawa, T.Tsunemi, C.J.Yoon Gifu: M.Kawasaki, H.Nakamura, K.Nakazawa, K.T.Tint, T.Watanabe Tohoku: K.Hosomi, T.Koike, Y.Ma, K.Shirotori, H.Tamura, M.Ukai AMU[.] R.Hasan BNL: R.E.Chrien CIAE: Y.Y.Fu, C.P.Li, Z.M.Li, J.Zhou, S.H.Zhou, L.H.Zhu Chonnam: J.Y.Kim Dongshin: M.Y.Pac Fukui: T.Yoshida He Gyeongsang: K.S.Chung, S.H.Kim, J.S.Song, C.S.Yoon KEK: M.leiri, H.Noumi, M.Sekimoto, H.Takahashi Nagoya: K.Hoshino, T.Kawai, B.D.Park, T.Sato, T.Watabe 10 -ЯНe NIRS: N.Yasuda 5 OsakaCity: K.Yamamoto Pusan: J.K.Ahn, S.Y.Ryu 0 10 um Toho: C.Fukushima, M.Kimura, S.Ogawa, H.Shibuya UCL: D.H.Davis, D.Tovee U.Houston: Ed.Hungerfold U.New-Mexico: B.Bassalleck

Collaborators

J.K.Ahn^(k), S.AJImura^(g), K.Aokl^(a), J.Arvleux^(o), B.Bassalleck⁽ⁿ⁾, B.H.Chol^(k), R.E.Chrlen^(m), F.Dlego^(s), P.Evtoukhovitch⁽ⁱ⁾, Y.Fu⁽ⁱ⁾, Y.Fujii^(b), H.Fujioka^(d), T.Fukuda⁽ⁱ⁾, O.Hashimoto^(b), M.leiri^(a), K.Imai^(a), T.Ishikawa^(b), V.Kalinnikov⁽ⁱ⁾, W.Kallies⁽ⁱ⁾, H.Kanda^(b), M.Kaneta^(b), T.Kishimoto^(g), T.Koike^(b), N.Kravchuk⁽ⁱ⁾, A.P.Krutenkova^(p), V.V.Kulikov^(p), C.Li^(l), X.Li^(l), B.Luigi^(r), Y.Ma^(b), K.Maeda^(b), S.Marcello^(r), T.Maruta^(a), K.Miwa^(f), A.Moiseenko⁽ⁱ⁾, D.Mzhavia⁽ⁱ⁾, T.Nagae^(a)(Spokesperson), D.Nakajima^(d), S.N.Nakamura^(b), K.Nakazawa^(e), H.Noumi^(a), M.Ombretta^(t), J.Reinhold^(q), P.K.Saha^(c), A.Sakaguchi^(g), V.Samoilov^(j), Y.Sato^(a), S.Sawada^(a), M.Sekimoto^(a), K.Shirotori^(b), H.Takahashl^(a), T.N.Takahashl^(d), T.Takahashl^(a), H.Tamura^(b), L.Tang^(w), K.Tanlda^(f), A.Toyoda^(a), Z.Tsamalaldze^(f), M.Ukai^(b), T.Watanabe^(e), H.Yamazaki^(b), M.Yosoi^(h), O.Zaimidoroga^(f), C.Zhou^(f), S.H.Zhou^(f), L.H.Zhu^(f)

- (a) High Energy Acclerator Research Organization (KEK), Japan
- (b) Tohoku University, Japan
- (c) Japan Atomic Energy Agency (JAEA), Japan
- (d) University of Tokyo, Japan
- (e) Cifu University, Japan
- (f) Kyoto University
- (g) Osaka University
- (h) Research Center for Nuclear Physics (RCNP), Osaka University, Japan
- (i) Osaka Electro-Communication University
- (j) Joint Institute for Nuclear Research (JINR), Russia
- (k) Pusan National University, Korea
- (I) China Institute of Atomic Energy (CIAE), China
- (m) Brookhaven National Laboratory (BNL), USA
- (n) University of New Mexico, USA
- (o) IPN-O, Universite Paris-Sud, France
- (p) Insititute of Thoretical and Experimental Physics (ITEP), Russia
- (q) Florida International University, USA
- (r) Universita di Torino, Italy
- (s) INFN, Sezione di Torino, Italy
- (t) INAF-IFSI, Sezione di Torino, Italy
- (II) Hampton University, USA

66 members

- from 21 institutes
 - 1

Collaboration list: E03

- Kyoto University
 - S. Dairaku, H. Fujimura, T. Hiraiwa, K. Imai, K. Miwa, A. Okamura,
 K. Tanida (spokesperson), C. J. Yoon
- Brookhaven National Laboratory
 - R. E. Chrien
- China Institute of Atomic Energy
 - Y. Y. Fu, C. P. Li, X. M. Li, J. Zhou, S. H. Zhou, L. H. Zhu
- Gifu University
 - K. Nakazawa, M. Ukai, T. Watanabe,
- KEK
 - H. Noumi, Y. Sato, M. Sekimoto, H. Takahashi, T. Takahashi, A. Toyoda
- JINR(Russia)
 - E. Evtoukhovitch, V. Kalinnikov, W. Kallies, N. Karavchuk,
 A. Moissenko, D. Mzhavia, V. Samoilov, Z. Tsamalaidze,
 O. Zaimidoroga
- Tohoku University
 - O. Hashimoto, K. Hosomi, T. Koike, Y. Ma, M. Mimori, K. Miwa, K. Shirotori, H. Tamura