Study on Neutron-Rich Λ-Hypernuclei at J-PARC

> Atsushi Sakaguchi (Osaka University)

for the J-PARC E10 Collaboration Osaka U, Seoul NU, U Torino, INFN, Osaka ECU, INAF-IFSI, KEK, RIKEN, JAEA

Nuclear chart with strangeness

NP08, 5-7 March 2008, Mito

Exotic n-rich Λ -hypernuclei

ΛN - ΣN Mixing

important in neutron-rich Λ -hypernuclei (large isospin)

NP08, 5-7 March 2008, Mito

Mixing effect in n-rich hypernuclei

Binding energy info is important

Coherent ΛN-ΣN mixing originally introduced to explain A=3-5 hypernuclei

Normal ΛN interaction B_{Λ} ~ 4.4 MeV

 Λ N-ΣN mixing effect B_Λ ~ 4.4 + 1.4 MeV

Precise measurement of B.E. \rightarrow Estimation of mixing effect

Production by DCX reaction

KEK-E521 experiment established

•
$${}^{10}B(\pi^-,K^+){}^{10}_{\Lambda}Li$$
 reaction

Clean reaction

K6 beam line @KEK-PS SKS spectrometer good energy resolution $\Delta B_{\Lambda} = 2.5 MeV (FWHM)$

~45 events in bound region $d\sigma/d\Omega$ ~10nb/sr (1/1000 of NCX)

Increase yield ×10 at J-PARC

Design of experiment

Beam Lines at Hadron Experimental Hall

K1.8 beam line and SKS

Beams for DCX measurement

Optimum π beam momentum ~ 1.2GeV/c
E521 experiment tells

pion beam momentum	1.05 GeV/c	1.2 GeV/c
${}^{10}B(\pi^-, K^+){}^{10}\Lambda$ Li cross section	5.8 nb/sr	11.3 nb/sr

- Puzzle of reaction mechanism of DCX
 - Naïve two-step reaction

$$\pi^{-} + p \to K^{0} + \Lambda, \quad K^{0} + p \to K^{+} + n \qquad \sigma (1.05 \text{ GeV/c})$$

$$\pi^{-} + p \to \pi^{0} + n, \quad \pi^{0} + p \to K^{+} + \Lambda \qquad > \sigma (1.2 \text{ GeV/c})$$

• One-step reaction with $\Lambda N-\Sigma N$ mixing

 $\pi^- + p \rightarrow K^+ + \Sigma^-, \quad (\Sigma^- p) \rightarrow (\Lambda n)$ Σ channel opens at 1.045GeV/c σ (1.05 GeV/c) < σ (1.2 GeV/c)

Yield estimation for ${}^{9}_{\Lambda}$ He production

- Cross section ~10nb/sr (~1/1000 of NCX)
- Major difficulty in this experiment

Parameters	Values	
π^{-} beam momentum	1.2 GeV/c	
π^{-} beam intensity	1.5 x 10 ⁷ /spill ← High intensity be	eams
PS acceleration cycle	5.7 s/spill	
⁹ Be target thickness	3.5 g/cm^2	
Reaction cross section	10 nb/sr	
Spectrometer solid angle	0.1 sr ← Large acceptance	
Spectrometer efficiency	0.5	
Analysis efficiency	0.5	

About 300 events in 3 weeks of beamtime

- **7 times larger** \leftarrow KEK-E521 (47 events)
- Discussion on level structure possible with new data

Prospects on B.E. measurement

• Measurement of B.E. of ${}^{6}_{\Lambda}H$

Assumptions

overall energy resolution

 $\approx 2.5 \text{ MeV}(\text{FWHM})$

 ${}^{6}_{\Lambda}$ H yield ≈ 300 events

 ${}^{6}_{\Lambda}$ H/QF ratio (Ex<23MeV) ≈1/10

Well separated from QF Statistical error of B.E. < 0.1MeV Minimize systematic errors

Summary

- We need new spectroscopic tools to expand the hypernuclear chart
 - Further study on the S=-1 system
 - DCX reaction is a candidate and promising

J-PARC E10 proposal

- Produce neutron-rich Λ-hypernuclei by DCX
- Use K1.8 beam line and SKS spectrometer
- Study exotic hypernuclei (⁶_AH, ⁹_AHe)
- Investigate ΛN-ΣN mixing effect by precise measurement of binding energies of neutron-rich hypernuclei
- Increase yield (× ~10) from E521