NP08, 5-7 March, 2008 in Mito Hypernuclear Spectroscopy with a High Resolution Beam Line

Hiroyuki Noumi, RCNP Osaka Univ.

Precision Hypernuclear Spectroscopic Data reveal *the Baryon-Baryon Interactions* in collaboration with Precision Theoretical Calculations

BB Interaction through Hypernuclear Spectroscopy

In Λ hypernuclear system, the frameworks work very well, demonstrating that:

- Single-Particle Structure: $B_A \rightarrow U_A$ G-matrix concept: Good
- Spin-Spin, Spin-Orbit splitting: AN spin-dependent force

 \rightarrow BB Potential Models, reproducing Λ Single-Particle Potential

TABLE XIX: Values of U_{Λ} at normal density and partial wave contributions for ESC04a-d and NSC97e/f obtained from the G-matrix calculations with the QTQ intermediate spectra. All entries are in MeV.

	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Λ}
ESC04a	-13.7	-20.5	0.6	0.2	0.5	-4.5	-1.0	-38.5
ESC04b	-13.3	-22.6	0.5	-0.0	0.6	-4.3	-1.1	-40.2
ESC04c	-13.9	-28.5	2.9	0.0	1.3	-6.5	-1.3	-46.0
ESC04d	-13.6	-26.6	3.2	-0.2	0.9	-6.4	-1.4	-44.1
NSC97e	-12.7	-25.5	2.1	0.5	3.2	-1.3	-1.2	-34.8
NSC97f	-14.3	-22.4	2.4	0.5	4.0	-0.7	-1.2	-31.8

Th. A. Rijken and Y. Yamamoto, Phys.Rev.C73: 044008.2006 BB Potential Models and Σ Single-Particle Potential

- U_{Σ} 's are to be repulsive. (E438 exp.) \rightarrow To be improved in ESC07
- U_{Ξ} 's will be examined in J-PARC (E05, ...)

TABLE XXII: Values of U_{Σ} at normal density and partial wave contributions for ESC04a-d and NSC97f (in MeV).

	Т	$^{-1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
ESC04a	1/2	11.6	-26.9	2.4	2.7	-6.4	-2.0	-0.8	
	3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5
ESC04b	1/2	9.6	-25.3	1.8	1.6	-5.4	-2.1	-0.7	
	3/2	-9.6	9.9	-5.5	-1.9	5.4	-4.6	-0.2	-27.1
ESC04c	1/2	6.4	-20.6	2.4	2.9	-6.7	-1.6	-0.9	
	3/2	-10.7	6.9	-8.8	-2.6	6.0	-5.8	-0.2	-33.2
ESC04d	1/2	6.5	-21.0	2.6	2.4	-6.7	-1.7	-0.9	
	3/2	-10.1	14.0	-8.5	-2.6	5.9	-5.7	-0.2	-26.0
NSC97f	1/2	14.9	-8.3	2.1	2.5	-4.6	0.5	-0.5	
	3/2	-12.4	-4.1	-4.1	-2.1	6.0	-2.8	-0.1	-12.9

Th. A. Rijken and Y. Yamamoto, Phys.Rev.C73: 044008,2006

BB Interaction through Hypernuclear Spectroscopy ≻In J-PARC, What would be investigated else?

- ✓ Ξ-nuclear system (S=-2): E03, E05, E07, ...
- ✓ Σ -nuclear system: Repulsive U_Σ (KEK-PS E438) YN(YA) scattering?→Miwa's Talk (Tamura's LOI, 2007) Coulomb Assisted Hybrid Bound State? or a few-body system?
- \checkmark Neutron-Rich Λ hypernuclear system:
 - $\Lambda\Sigma$ mixing effect in medium: Many-Body Force $\Lambda N-\Sigma N$ coherent coupling effect in I \gg 0 Nucle

...may affect:

 Λ Binding Energy: B_{Λ}

production mechanism of n-rich Λ hypernuclei

✓ <u>High Dense Nuclear Matter:</u> *i.e.* Neutron Star Core

- $\Lambda\Sigma$ coupling effect
- density dependent of ${\rm U}_{\Lambda}$

...may affect the EoS of NS

First Observation of n-rich ${}^{10}_{\Lambda}$ Li via the (π^- ,K⁺) reaction at KEK-PS

 $d\sigma/d\Omega = 11.3 \pm 1.9$ nb/sr at 1.2 GeV/c

as small as ~1/1000 of (π^+, K^+)

 \rightarrow the Λ state produces via Σ component through $\Lambda\Sigma$ coupling ?

Single-particle Λ potential in neutron matter ($T=\infty$)

Density Dependence of Λ -Single Particle Potential

Difference of P-wave contribution

Th. A. Rijken and Y. Yamamoto, Phys.Rev.C73:044008,2006

FIG. 12: Calculated values of U_{Λ} as a function of ρ/ρ_0 for ESC04a (solid curve), ESC04b (dashed curve), ESC04c (dotted curve) and ESC04d (dot-dashed curve). The thin dashed curve is for NSC97f.

 $U_{\Lambda}(\rho)$ is of interest to test YN potentials,

manner of which affects EoS of High Dense Matter, *i.e.* NS.

It would be nice if one can make a dense nuclear matter with a Λ being implanted...

Precise and systematic measurements of the Λ -single particle states in various hypernuclei may give information on U_{Λ}(ρ).

In order to Explore neutron-rich Λ with High Statistics and High Precision,

High Intensity, High Resolution Beam Line

is indispensable.

- Provide very intense pion beam of as high as 10⁹ Hz to overcome a small cross section, to use a thin target for a high resolution.
- Dispersive beam at the exp. target and
- Momentum Matching of the Beam Line w/ the Spectrometer
- Realize a High Resolution of dp/p=1/10,000.

× 100 higher Statistics × 10 higher resolution

Layout Plan in NPFC(2002)

Layout Plan (under develop)

Layout Plan in Extended HD-Hall

Specification (to be designed)

 Max. Beam Momentum: 2 GeV/c Dispersion:b₁₆=-10m, x-magnification:b₁₁=1 Acceptance:~2msr*%
 Max. Scattered Momentum: 1.6 GeV/c Dispersion:s₁₆=-10m, x-magnification:s₁₁=-1.2~-1.5 Solid Angle:~10 msr, Mom. Acc.:~+-10%

(Almost) Full Momentum Matching Condition can be realized for ①(π,K+) at p_π=1~1.2 GeV/c, dq~0.4~0.5 GeV/c
②N(π,N)φ at p_π~2 GeV/c, dq~0.4~0.5 GeV/c
③p(π⁻,K⁻)Θ⁺ at p_π~2 GeV/c, dq~.1 GeV/c
Intrinsic Energy Resolution at the matching condition (1st order): ΔE~ 100 keV for ① and ③ ~ 200 keV for ②,

in the case of $\Delta x=1$ mm (expected rms beam size at T1).

Sanford Wang

50GeV-15µA, Ni-54mm, BL-Length=50 m, Acceptance:2msr%

Demonstration

Superfine Structure of Medium Heavy A Hypernucleus

World of ⊿E=0.2 MeV

Yield Estimation

≥ ⁸⁹
$$_{\Lambda}$$
Y-g.s. (0.6µb/sr), 1mm target

 \bigcirc

> ¹²_ABe (0.01µb/sr), 0.6g/cm2 target

20 counts/day

Many Applications to High Precision Spectroscopy with High Intensity pion and pbar Beams

...No time to explain in detail.

✓ High Precision S=-1 Hypernuclear Spectroscopy

• Neutron-rich Λ hypernuclei (\rightarrow Sakaguchi)

 $(\pi^{-},\mathsf{K}^{+}), (\pi^{-},\mathsf{K}^{0}) \rightarrow (\mathsf{pbar},\Lambda\mathsf{bar})$

- Λ Hypernuclear Weak Decay (\rightarrow Ajimura for ${}^{4}_{\Lambda}$ He, ${}^{4}_{\Lambda}$ H) ($\pi^{+},$ K⁺), ($\pi^{-},$ K⁰) \rightarrow (pbar, Λ bar)
- Σ -Nucelus System (CAHBS, Few-body \rightarrow Tamura's LoI)

- Spectroscopic studies of $\phi,\,\eta\text{-mesic}$ nuclei

- $A(pbar, \phi)_{\phi}D (\rightarrow Ohnishi)$
- $A(\pi,N)_{\eta}D(\rightarrow)$ Itahashi)

Exotic Hadrons

• $\Theta^+(d(K^+,p)\Theta^+,p(\pi^-,K^-)\Theta^+) (\rightarrow Tanida, Naruki)$

 \rightarrow d(pbar, K⁻) Θ ⁺ may be available.

BG free by Kaon Tagging!

HIHR Beam Line + Solenoidal Forward Spectrometer for neutral particles (ϕ ,K⁰, Λ)

SUMMARY

- ✓ High Precision Spectroscopy of Λ hypernuclei is necessary to establish YN interaction and Y-interaction in Nuclear Medium.
- High Intensity, High Resolution Beam Line is proposed as a powerful tool to explore a wide region of Λ hypernuclei, particularly n-rich Λ hypernuclei.
- ✓ Specification of HIHR BL:
 - Momentum dispersion matched beam line and spectrometer system to achieve a resolution of as high as 1/10,000, Beam π of up to 2 GeV/c Scattered K+ of up to 1.6GeV/c
 - Utilize very high intensity beam : 10⁹ π/pulse (10⁷ p /pulse) may open new paradigm in high resolution spectroscopy. It would bring a kind of break through in mass production of Λ hypernuclei