The 4th International Workshop on Nuclear and Particle Physics at J-PARC (NP08), Mito, 5-7 Mar 2008

Search for Medium Range Force by a Precision Measurement of Neutron Scattering Cross Section

Tatsushi ShimaResearch Center for Nuclear Physics, Osaka University

- Introduction
- Why neutron?
- Small angle scattering with gas target
- Simulations
- Summary

Reference: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)

Potential Newtonian exotic interaction (Yukawa-type) $V_G(r) = V_g(r) \cdot (1 + \alpha \exp(-r/\lambda)) \qquad \left(V_g(r) = -G\frac{M \cdot m}{r}\right)$

Theoretical models:

- Large Extra Dimension (Alkani-Hamed, Dimopoulos, Dvali)
- Radion-mediated force
- Moduli coupling (exchange of string-theory scalars)
- Axion exchange
- Multi-particle exchange (axions, v-v, etc.)
- Vacuum-energy scenarios ("fat graviton" model)

Constraint on Non-Newtonian Gravity in Sub-millimeter Range

Torsion-balance experiments

Atomic Force Microscopy

Background

Van der Waals force is dominant at $l < \sim 10 \mu m$;

(Casimir-Polder)

$$\boldsymbol{U}_{\boldsymbol{C}} = -\frac{3\hbar\boldsymbol{c}}{8\pi}\frac{\boldsymbol{\alpha}_{0}}{\boldsymbol{l}^{4}}$$

Electric polarizability of atoms; $\alpha_0 \sim 10^{-24} \text{ cm}^3$

Neutron ; $\alpha_n \sim 10^{-42} \text{ cm}^3$

Search for New Intermediate-range Force via Neutron Scattering Greene & Gudkov Zimmer & Kaiser

 $\frac{d\sigma(\theta)}{d\Omega} = \left[a_N + a_{ne}ZF_e(\theta) + a_GF_G(\theta)\right] \qquad a_G \propto \alpha$ $\approx a_N^2 + 2a_Na_{ne}ZF_e(\theta) + a_{ne}^2Z^2F_e(\theta)^2 + (2a_Na_GF_G(\theta))$

Frank, Isacker & Gómez-Camacho

- a_N ; nuclear scattering amplitude
- a_{ne} ; neutron-electron scattering amplitude
- a_G ; gravitational scattering length
- *Z* ; atomic number of target
- $F_{e}(\theta)$; form factor for atomic electron
- $F_G(\theta)$; gravitational form factor

Cross Section

$$\frac{d\sigma_G(\theta)}{d\Omega} = \alpha^2 \left(\frac{G \cdot m_n \cdot M}{4}\right)^2 \cdot \left(\frac{1}{\frac{1}{m_n c^2} \left(\frac{\hbar c}{\lambda}\right)^2 + 8E_n \sin^2 \frac{\theta}{2}}\right)^2$$

- *G* : coupling constant of Newtonian gravity
- α : coupling constant of LED gravity
- λ : range of non-Newtonian gravity
- *M* : target mass
- m_n : neutron rest mass

Experimental Setup

Neutron Energy Spectrum at J-PARC/JSNS/BL05/High-intensity branch

Forward scattering ($\Delta q \sim 0.01 \text{\AA}^{-1}$) $\Rightarrow \lambda \sim 10 \text{nm}$

Monte Carlo Simulation; Velocity Distribution of Scattered Neutrons

Counting rate; Ar

σ_N(³⁶Ar)=77.90 b σ_N(⁴⁰Ar)=0.421 b

Counting rate; Xe

¹²⁴Xe(n,n) cross section

Sensitivity (2year measurement, 95% C.L.)

Summary

- Slow neutron is an ideal probe for testing the inverse-square law of the Newtonian gravity in the sub-micrometer range.
- Small-angle scattering of slow neutron with noble gas atom is a simple way to search for exotic intermediate-range forces.
- Experiments with enriched targets of ^{36,40}Ar and ^{124,nat}Xe are planned at the high-intensity branch of the J-PARC/JSNS/BL05 beam line.

Models of Exotic Intermediate-Range Forces

- Large Extra Dimension (Alkani-Hamed, Dimopoulos, Dvali)
- Radion-mediated force
- Moduli coupling (exchange of string-theory scalars)
- Axion exchange
- Multi-particle exchange (axions, v-v, etc.)
 - ⇒ power-law potential
- Vacuum-energy scenarios ("fat graviton" model)

Large Extra Dimension model

Alkani-Hamed, Dimopoulos, Dvali (ADD)

Hierarchy problems ; • $M_{EW} \sim 100 \text{GeV} \Leftrightarrow M_{Pl} \sim 10^{19} \text{GeV}$

Size of compact space R is so large as $G_3 << G_N$, but is smaller than experimentally surveyed range (~1mm).

Atomic Form Factor

$$F_{e}(q) \cong \begin{cases} 1 & \text{for } q << 0.01 \, \dot{\text{A}}^{-1} \\ 0 & \text{for } q >> 10 \, \dot{\text{A}}^{-1} \end{cases}$$

More precisely,

 $F_e(q) \approx 0.998$ at $q = 0.01 \, \text{\AA}^{-1}$

