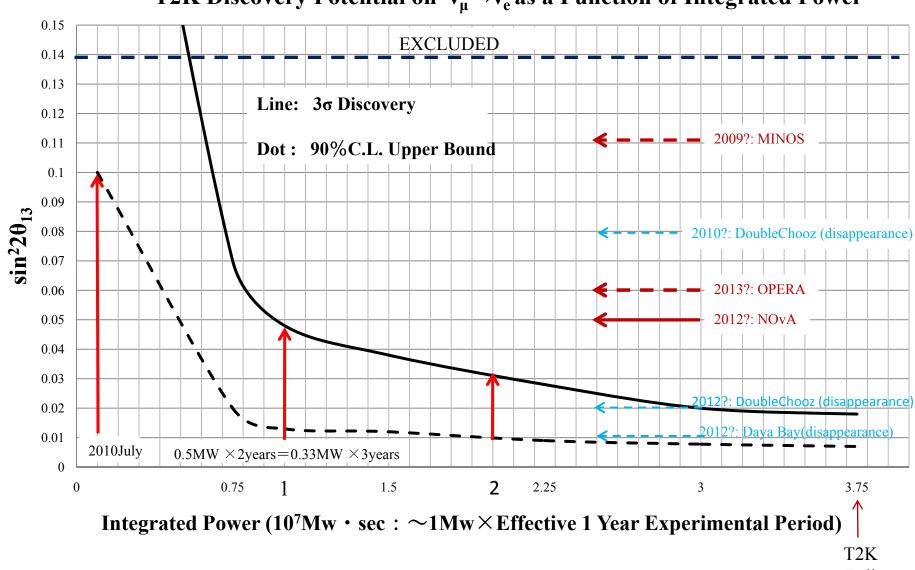
Introduction to the Work on the 2nd Phase Experiment with J-PARC Neutrino Facility

Takuya Hasegawa(KEK)

Primary Motivation of T2K


Discover $v_{\mu} \rightarrow v_{e}$ Conversion Phenomenon Prior to Any Other Experiment in the World

Conclude Lepton Flavor Mixing Structure

T2K Proposal Accepted by J-PARC PAC

"We request total integrated beam power larger than $0.75MW \times 15000h$ at any proton energies between 30 and 50 GeV."

 $15000 h = 5 \times 3000h$ $\Rightarrow 5 \times 10^{7} sec$

T2K Discovery Potential on $v_{\mu} \rightarrow v_{e}$ as a Function of Integrated Power

Full Proposal

Integrated Power of 1~2MW×10⁷seconds is a Turning Point to Decide Next Project Utilizing J-PARC Neutrino Facility

Future Investment for the "Discovery" in v Physics we are High Energy Experiment Researcher Not much Interested in Upper Bound Physics

If **Significant** v_e Signal \rightarrow Try CP Violation Discovery

MUST: Improve v Beam Intensity MUST: Improve the Main(Far) Detector Quality In terms of <u>Detector Technology, Volume</u> and <u>Baseline+Angle</u>

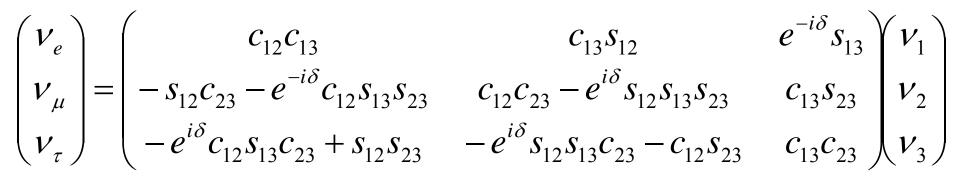
optional: improve Near Detector(whatever it is)

Possible MR Power Improvement Scenario

	Day1 (up to Jul.2010)	Next Step	KEK ROADMAP	Ultimate
Power(MW)	0.1	0.45	1.66	?
Energy(GeV)	30	30	30	
Rep Cycle(sec)	3	3-2	1.92	
No. of Bunch	6	8	8	
Particle/Bunch	1.2×10^{13}	<4.1×10 ¹³	8.3×10^{13}	
Particle/Ring	7.2×10^{13}	<3.3×10 ¹⁴	6.7×10^{14}	
LINAC(MeV)	181	181	400	
RCS	h=2	h=2 or 1	h=1	

After 2010, plan depends on financial situation

Brand New Far(Main) Detector


- Detector Technology
 - Water Cherenkov
 - Liquid Ar TPC
 - Etc.

Focused in this Workshop

• Baseline+Angle

Depend on How to Approach Lepton Sector CP Violation

Lepton Sector CP Violation

- Effect of CP Phase δ appear as
 - v_e Appearance Energy Spectrum Shape (Sensitive to All the Non-Vanishing δ including 180°)
 - Difference between v_e and \overline{v}_e Behavior

Assumption of Beam for This Workshop KEK Road Map

- MR Beam Power:
- MR Beam Energy:

• 5 Years or 10 Years

- Beam Time:
- pot/year:
- Beam Axis

- 1.66MW 30 GeV 10^7sec/year $3.45 \times 10^{21} \text{pot/year}$ 2.5° for *K* satisfies
- 2.5° for Kamioka
- Sharing of the Neutrino and anti-Neutrino Beam

Discussion in This Workshop 1 Discovery of Lepton Sector CP Violation

- Method to Approach Lepton Sector CP Violation
- Detector Technology
 - Liquid Ar TPC: Precision Measurement Detector
 - Water Cherenkov: Simplicity, Mass
- Baseline
 - Long: Oscillation Maximum at Higher Energy, Utilize Matter Effect (Neutrino Cross Section is Higher at High Energy)
 - Short: More Intense Neutrino Flux, Control of π^0 Background Less Matter Effect
- Angle w.r.t On-Axis
 - On-Axis: Wide Energy Coverage
 - Off-Axis: Narrow Energy Coverage, Control of π^0 Background
- Size of the Detector

Discussion in This Workshop 2 Discovery of Proton Decay Detector Challenge

Huge Main Neutrino Detector

– The Discovery Potential for the Proton Decay

 The Realistic Step to Realize Huge Detector (what is achieved and what should be achieved to realize experiment)

Spirit of this Working Group

- Starting Point toward 2nd Phase Experiment
- Seek the Best Way
 to Obtain Maximum Physics Outcome
 Not a Competition at This Stage
 - But a Place to Understand Well about the Advantage/Difficulty of Each Strategy

We Should be Prepared **NOT MISSING** Rare Opportunity (Probably Only Once at the $v_{\mu} \rightarrow v_{e}$ Discovery) to Initiate the Discovery Experiment of Lepton Sector CP Violation and Proton Decay

Let's Start Discussion