

Fanny Dufour, Boston University NP08, Mito, March 5th – 8th 2008

Outline

General motivation for T2KK

Why Korea and where in Korea?

> Dealing with the background

- Simulating the BG (NC especially)
- Effect of photo-coverage

₲ T2KK analysis:

- Event spectrum and χ^2 analysis
- What is the best off-axis angle?

The Hyper-K project

Also good for: - solar & atmospheric \vee Fiducial V. Total Volume - proton decay searches SK 50 kt 23 kt 1000 kt 2x270 kt - supernova HΚ I Mton detector split Inner Detector **Opaque** Sheet into at least Access Drift Liner Water Purificat 2 sub-detectors. Fiducial mass = 0.54 Mton Photo-Detectors HEC 103 54m SECTIO Access Drift Plat leight 54 mpartment Length 50m Length 250m15 Compartments2 Could be built in Korea 48m Dia. ø43m Wide 03/06/08 Fanny Dufour, NP08

Why a detector in Korea?

Main Physics reasons:

 Observe both first and second oscillation maximum in V_e appearance.

Practical reasons:

- We will already have the beam.
- The Hyper-K project already needs at least 2 sub-detectors.
- Having 2 identical detectors on the same beam minimizes systematic uncertainty.

Where in Korea?

- In Korea, the smallest off-axis angle available is 1.0°.
- Four off-axis angles have been considered.

Flux and appearance in Korea

Small off-axis angle: (high energy tail)

1st appearance peak
 x more NC background

Big off-axis angle: (narrow peak)

Low background
 Low statistics at high E
 Only 2nd appearance peak

Likelihood analysis: basics

 Main source of background come from π⁰ produced by neutral current when one of the γ is missed.

- The goal of the likelihood is to efficiently separate signal events from NC background events.
- First we select events with a set of precuts (see slide 8) and then we construct the likelihood (see slide 9).
- We tried both T2K and Super-K atmospheric Monte Carlo and since our analysis is binned in energy, the results were comparable.

→ We decided to use the SK atmospheric MC since we can check its accuracy by comparing it to the SK atmospheric data.
03/06/08
Fanny Dufour, NP08
7

Likelihood analysis: Sample used

We use the Super-K atmospheric Monte Carlo and we keep events if they are:

- single ring
- electron-like
- with no decay electron
- inside the fiducial volume and fully contained.

NB: the v_{μ} mis-ID BG is not plotted because it is always below 0.01 Precuts effciency

Likelihood analysis: variables

03/06/08

Likelihood variables:

Standard SK variables: ring parameter, PID parameter

POLfit variables:

 π° mass, π° likelihood, energy fraction of second photon

Variables using beam direction info: chi_xalong, chi_cosopen, $\cos\theta_{ve}$

9

Final likelihood efficiency

We did a study of S/~/B and we found that keeping 80% of the signal is what gives the best results.

	Cut that keeps 80% of signal		
Energy (rec)	ν_e	NC	ν_{μ} mis-ID
0 - $350~{\rm MeV}$	82.7%	5.2%	6.9%
350 - $850~{\rm MeV}$	84.2%	28.0%	25.3%
$850~{\rm MeV}$ - $1.5~{\rm GeV}$	83.1%	28.2%	30.2%
1.5 - $2.0~{\rm GeV}$	83.8%	33.3%	39.3%
2.0 - $3.0~{\rm GeV}$	84.5%	27.1%	53.2%
3.0 - $4.0~{\rm GeV}$	79.0%	27.5%	45.9%
4.0 - $5.0~{\rm GeV}$	75.8%	52.3%	41.9%
5.0 - $10.0~{\rm GeV}$	78.8%	19.4%	51.4%

Background Simulation

For the background simulation, we also make use of the SK atmospheric Monte Carlo. This gives a very accurate energy resolution:

Run over SK atmospheric MC:

Keep events if: single ring, electron-like with no decay electron, inside fiducial volume ie. likelihood!

- Apply likelihood efficiency as a function of reconstructed energy. Using reconstructed energy takes care of the energy response.
- Re-weight BG by ratio: (beam v_{μ} flux/atmospheric v_{μ} flux)
- Normalize for running conditions (#POT, time, volume)

ie. precuts!

NC Background simulation

What about the photo-coverage?

"Thanks" to the accident in SK, we have MC corresponding to 20% and 40% photo-coverage

We tested our likelihood on both samples, and it gives very similar results.

Photo-coverage results

The T2KK setup

Volume Beam power Running time 1 year is Proton energy Tot #POT

Distance OA angle T2KK 2 times 0.27Mton (FV) 4MW 4yrs nu + 4yrs antinu 1.12 x 10⁷ seconds 40GeV 28 x 10²¹ POT

295 km and 1050 km 2.5° OA and 1.0° OA Factor of 0.46 in the number of neutrinos (1.66MW*5years)/ (4MW*4years*1.12)

Scenario B

2 times 0.27Mton (FV) 1.66MW 5yrs nu + 5yrs antinu 10⁷ seconds 30 GeV **3.45 x 10²¹ POT**

295 km and 1050 km 2.5° OA and 1.0° OA

Spectra in Kamioka and Korea

Spectra in Kamioka and Korea

Definition of the χ^2 analysis.

cf:Phys Rev D, 72 033003 (2005) eq 3) and 4)

03/06/08

Sensitivity for 2 off-axis angles

The best results for mass hierarchy is given with the far detector located at 1° off-axis angle.

The results for CP violation are comparable.

Sensitivity for 2 off-axis angles

- The best results for mass hierarchy is given with the far detector located at 1° off-axis angle.
- The results for CP violation are comparable.

Conclusions

- A detector in Korea allows to extract information from the first and second v_{a} appearance maximum.
- Dealing with NC background is a major challenge:
 - We constructed a likelihood which can remove around 70% of NC BG
 - 20% and 40% photo-coverage give similar results for BG rejection
- About location of the far detector:
 - For mass hierarchy: The T2KK setup with the Korean detector at 1° off-axis angle is the best.
- For CP violation: There is no strong preference on the location of 03/06/08
 the far detector.

Converting running conditions

	Workshop	Fanny	Comments
Proton energy	30 GeV	40 GeV	Given, cannot change
Beam power	1.66 MW	1.66 MW	Want to keep constant
POT/yr	3.45 x 10 ²¹	2.6 x 10 ²¹	
Running sec/year	10 ⁷ sec	10 ⁷ sec	
Proton/bunch	8.3 × 10 ¹³		
Bunch/cycle	8		
Rep. Cycle	1.92		
#proton/rep cycle	34.5 x 10 ¹³	26 x 10 ¹³	Accelerator conditions

To keep beam power constant with higher energy protons,

Eq 1) >>> I have to decrease the number of POT accordingly. Eq 2) >>> I have to loosen the Accelerator conditions.

03/06/08

Converting POT....

I only had flux files that were generated with 40 GeV protons but the running conditions for the workshop specify 30 GeV protons. How to convert properly?

Quick reminder: POT = (proton/bunch) * (bunch/cycle) *(sec/year) eq (1) reptition cycle

Neutrino flux ∞ Beam power = Energy (protons) * (protons/cycle) eq(2) repetition cycle

So what I want to keep constant is the beam power, since the neutrino flux is proportional to the beam power

T2KK results using best likelihood

Spectrum in Korea 1°OA

Region plots (4MW etc...)

Best mass hierarchy sensitivity for OA = 1° Doesn't matter much for CP violation

Fraction plots (4MW etc...)

Background simulation (NC)

Compare the background simulation obtained with

Full SK Monte Carlo (MC method):

Use the atmospheric Monte Carlo sample. Get very realistic energy resolution

Smearing method:

Start with a neutrino flux spectrum and multiply by energy smearing matrix and efficiencies. Similar to GloBES, but I am not using GloBES itself

Question: Is the smearing approach as good as using a Monte Carlo sample?

Example of energy smearing for NC

Dealing with energy response is crucial!

This is the true neutrino energy

$$\frac{\textit{Reconstructed energy:}}{E_{rec}} = \frac{m_n E_e - m_e^2/2}{m_n - E_e + (P_e \cos \theta_{ve})}$$

We used SK atmospheric MC, NC events, for events that passed the precuts.

Comparison of background

Both methods give very similar spectra, even if the amount of high energy background, varies slightly.

The smearing approach is suitable as long as the response from E_{true} to E_{rec} for neutral current is properly used.

What kind of background?

- $v_{\mu} \rightarrow \mu$ with e/ μ misidentification
- V_e contamination in the beam $K \rightarrow \pi v_e e$ $\mu \rightarrow e v_\mu \overline{v_e}$

good e/µ ring identification 0.7%

0.2–0.3% Known from 2km detector

• π° when one of the \vee is missed:

Main source of background

 produced by neutral current