
A brief consideration on μ -bunched beam for $K_L \rightarrow \pi^0 vv$ experiment

T. Nomura (Kyoto U)

μ-bunched beam - KOPIO case

The second second

- Protons packed in narrow bunch (a few hundred ps)
- → One can know K_L (and other) generated time

5-7 March 2008

μ-bunched beam - KOPIO case

A THE MARKS THE SHARE STORED AND A PROPERTY CONTRACTOR OF AN AND A CONTRACTOR

 TOF measurement with low momentum K_L (<1GeV/c)
 Calculate kinematic variables in K_L rest frame and obtain additional BG rejection

 For example, E^{*}(π⁰) of K_L→2π⁰ becomes monochromatic

Application to E14 and toward

- Possible benefits
 - 1. TOF difference between K_L and neutrons
 - To reduce neutron-induced backgrounds
 - 2. TOF difference between K_L decay photon and beam photon and neutron
 - For in-beam photon veto detector
 - 3. K_L momentum (velocity) measurement

Points to be considered

A THE MARCHER SAFE STORE STORE & MARCHER & STORE STORE

K_L yield in one bunch

 Arrival time chart of K_L, n, γ at the detector

• Required resolution for β measurement I can't cover it at this time. Sorry.

5-7 March 2008

K_L yield in one μ-bunch

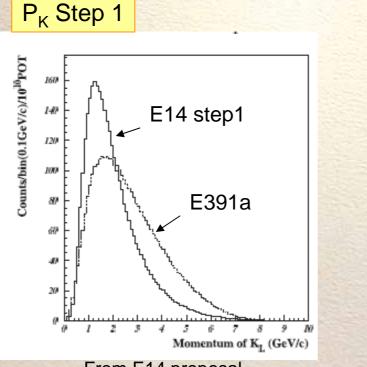
 Multiple K decays in one μ-bunch cause accidental signal loss.

- Loss = P(n>=2)/P(n>=1) ~ <x>/2

<x>: mean of N(decay) in a bunch

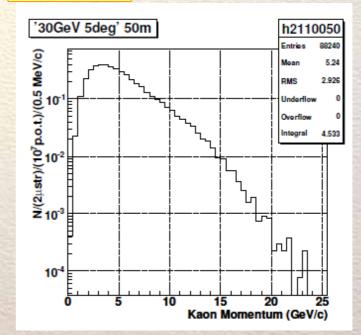
	NK _L /spill	Decay prob	N decay	μ-bunch freq for <x>=0.2</x>
step1	8x10 ⁶	~10% (in 6m)	1MHz	5MHz
step2	4x10 ⁷	~10% (in 15m)	6MHz	30MHz

Spill length is assumed to be 0.7sec.


Arrival time chart

- Arrival time of photons at the calorimeter

 Z(calorimeter)=Z(downstream end) for easiness
 - Consider arrival time window for K_L decay
 momentum window for K_L
 - Consider photons from neutron interactions with materials (a detector) at
 - Upstream end of decay region
 - Downstream end of decay region

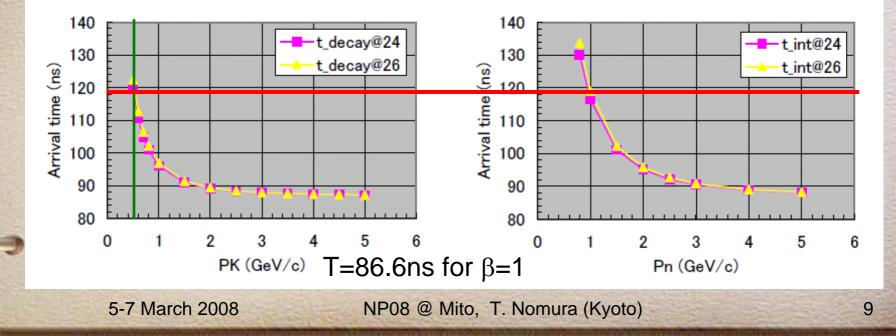

Arrival time window ~ P_K window

The second state and the second state of the second s

From E14 proposal

P_K Step 2

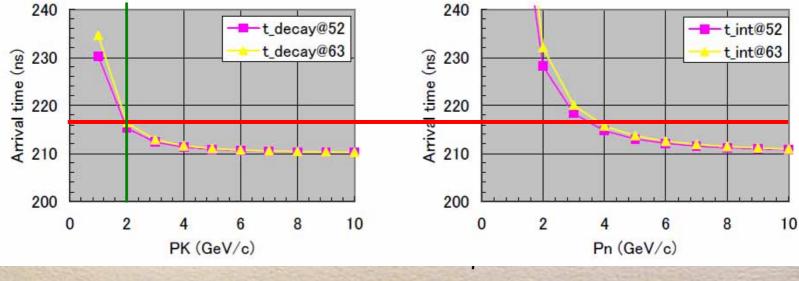
From master thesis by Nakajima (2006, Kyoto U)


5-7 March 2008

Arrival time chart : step1

The second se

Decay	region	K _L momentum			
Begin	End	Min	Av.	Max	
(21+3) m	(21+5) m	~0.5	~2	~3	


Not so effective,
 since harmful neutrons
 (above π⁰ production thres.;
 ~1GeV/c) can't be rejected

Arrival time chart : step2

A TE WAR STAR SAFA FLORING & MADER & STAR STAR STAR STAR STAR

	Decay region		K _L momentum			→May have a chance to reject halo n BG.
and the	Begin	End	Min	Av.	Max	But,
Contraction of the second	(50+2) m	(50+13) m	~2	5.2	~8	recall required repetition:
CHINE I	and the second	NO STREET				30MHz = 33ns

5-7 March 2008

Arrival time chart at in-beam veto

- 1. Beam photons come first.
- 2. K decay photons come next.
- 3. Beam neutrons come at last. (2 & 3 depends on momentum)
 ← We want to detect "2" only
 Can we distinguish them by arrival time and avoid performance loss?
 → Unfortunately, "NO"

Arrival time chart at in-beam veto

- Difference between beam photon and K decay photon
 - Same as arrival time difference at the calorimeter (see previous slides)

→ difficult to distinguish in both step1 and 2

- Difference between neutron and K decay photon
 - → May have a chance in step1
 - ➔ probably not in step2 due to harder core neutron

Large angle extraction?

- Pros
 - Lower K_L momentum, better TOF resolution
 - Softer neutron, less harmful
- Cons
 - Less K_L yield (N(45deg)/N(5deg) ~ 1/10?)
 - Larger target image, impact on beam-line design
- BG rejection power, not clear

Detailed studies are necessary

 Back-of-an-envelope consideration for μ-bunched beam option
 → So far, I cannot find promising merit in case step1 (16deg) and step2 (5deg)
 → But, it depends on various parameters

Further consideration is needed
 BG rejection, parameter optimization, etc.

5-7 March 2008