Simulations for super raredecay experiments

Kyoto University Hajime Nanjo 2008/03/06 NP08

MC Simulation

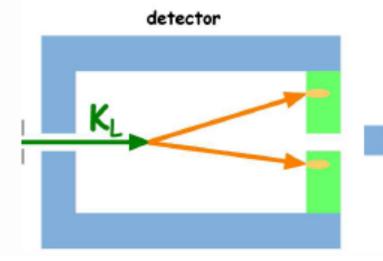
Estimate environment KL/neutron momentum, flux Design and evaluate beamline KL, core / halo neutron momeutum, flux Design detector Detector hit rate Requirements for detector inefficiency Quantitative evaluation of Signal/ Backgrounds Analysis stage

Current E14 simulation status

Target simulation FLUKA/G3/G4 Beamline simulation FLUKA/G3/G4 Detector (G4 base framework) Kπνν signal K background • Kp2

- chKp3
- Ke3

Halo neutron background


- CC02
- CV-π0

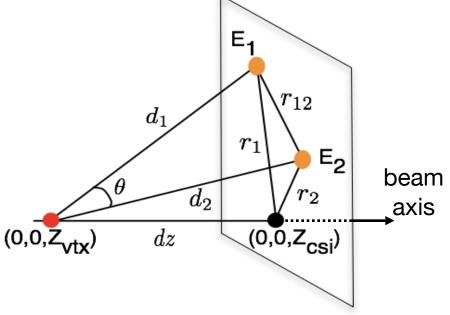
$\pi^0 \nu \nu$ experiments

2 gammas from π⁰ → Calorimeter

(In E14, π⁰→eeγ is not used due to small Br)

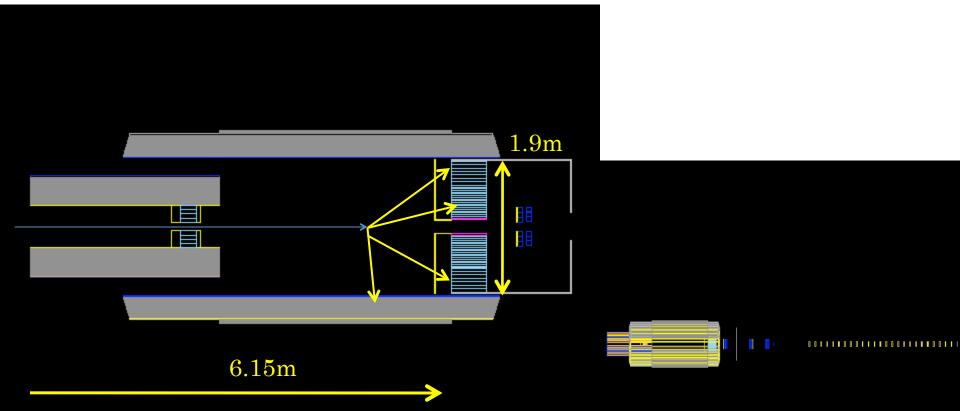
No other activities → Veto detectors
→ Two types of detectors

MHz/cm² core neutron flux


E14 approach

Pencil beam method

Reconstruct p0 assuming its vertex is on the z axis


$$cos\theta = 1 - \frac{M_{\pi^0}^2}{2E_1E_2}$$

Calo:

- Energy leak
 - Shower leakage
 - Photonuclear effect
- Energy addition
 - Extra particles in π^0 or η production by halo neutron

E14 Detector

CsI : Calorimeter and Veto function

Items to simulate

CsI as Calo

Gamma energy reconstruction

- Energy leak (Shower leakage and Photonuclear)
- Energy addition by extra particles π^0 or η from neutron interaction

Cluster shape

CsI as Veto

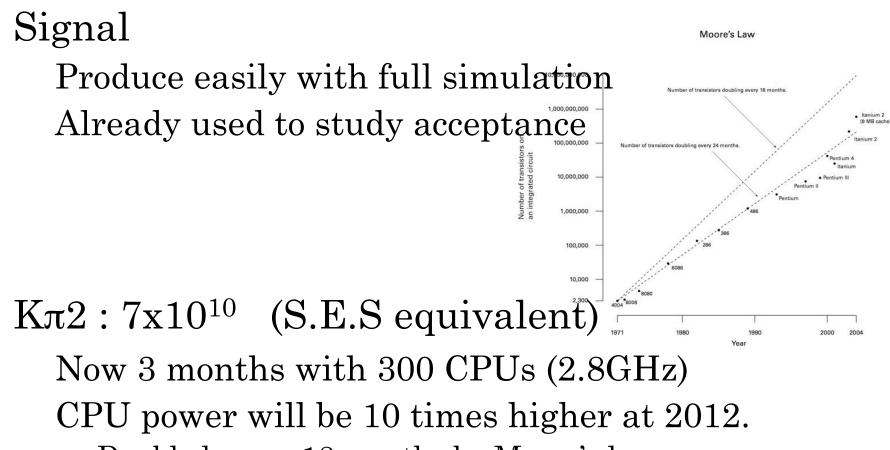
Inefficiency (incl. fusion) down to 1 MeV

Other Veto detectors

Gamma inefficiency

- Inefficiency down to 1MeV
- Punch through, Sampling, Photonuclear effect Charged inefficiency
 - $\pi^{-} + A \rightarrow \pi^{0} + X$
 - $e^+ + e^- \rightarrow \gamma + \gamma$

Neutron interactions


 $\pi^{\scriptscriptstyle 0}\!,\eta$ production

E14 Simulation method

Full simulation

- Some speed-up methods
- Fast simulation
 - Inefficiency/fusion weight, smearing for CsI
- Recycling events of interest
- Fast-Full simulation
 - Use full simulation at CsI response and at halo-neutron interaction

Full Simulation

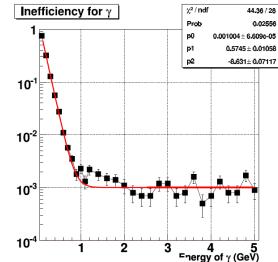
• Doubled every 18 months by Moore's law.

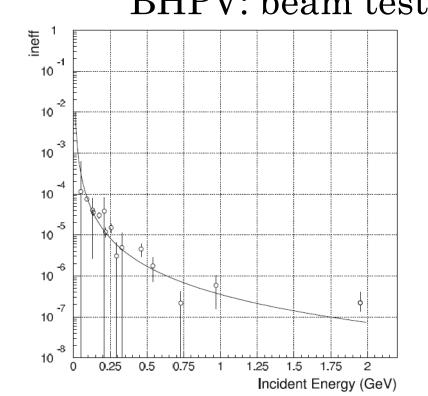
Speed up of MC production

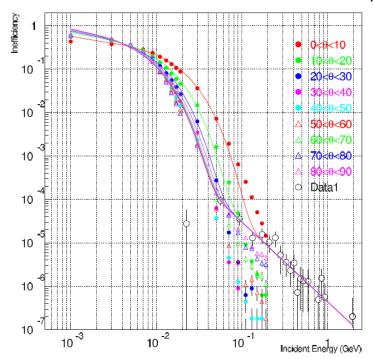
Time [sec] for	Conditions
$10^4 K_L \rightarrow 2\pi^0$	
120	FastSimLevel==5 for PhotonVetos
229	FastSimLevel==3 for PhotonVetos
1029	FastSimLevel==3 for BHPV
1099	FullShower
526	OnlineThresholdFastVeto
491	OnlineThresholdFastVeto, DetectorOrder
345	OnlineThresholdFastVeto, DetectorOrder, VtxFastTrigger
	$ ightarrow$ 9.2 months with 100 CPUs for $6.9 imes10^{10}~K_L ightarrow2\pi^0$

÷	Stop at the surface of the volume.		
÷	Stop after the first step inside the volume.		
ż	Stop 2ndary-creation from the processes,		
	eBrem, annihil, and, conv.		
:	Kill the event immediately if Edep>Threshold.		
	CC00 0.05 GeV, CC01 0.05 GeV, CC02 0.05 GeV, CC03 0.05 GeV, CC04 0.05 GeV,		
	CC05 0.05 GeV, CC06 0.05 GeV, FBAR 0.05 GeV, CBAR 0.05 GeV, CV 0.002 GeV		
2	Decide from which detector shower simulation start.		
	BHCV CV BCV CC04 CC05 CC06 BHPV CC00 CC01 CC02 FBAR CBAR CSI		
2	Trigger with the end z-position of the primary.		
	/GsimStackingAction/triggerPrimaryEndZ -10*m 10*m		

Fast Simulation

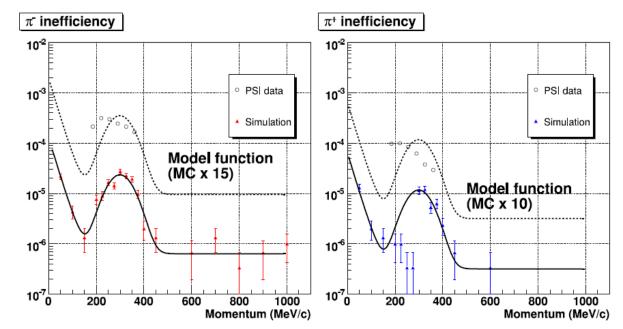

Stop particles on the surface of detectors Use inefficiency, fusion weights


- It enables to evaluate S/N with smaller MC statistics
 - Rare event topologies can be treated as event weights.
 - BG evaluation with ${\sim}10^7$ events / 1day for K backgrounds.


				acceptance loss
		standard cuts	CsI cluster shape cut	(50%)
Signal	$K_L \to \pi^0 \nu \overline{\nu}$	6.0 ± 0.1	5.4 ± 0.1	2.70 ± 0.05
K_L BG	$K_L \to \pi^0 \pi^0$	3.7 ± 0.2	3.3 ± 0.2	1.7 ± 0.1
	$K_L \to \pi^+ \pi^- \pi^0$	0.18 ± 0.08	0.16 ± 0.07	0.08 ± 0.04
	$K_L \to \pi^- e^+ \nu_e$	0.13 ± 0.01	0.03 ± 0.003	0.02 ± 0.001
halo n BG	CV			0.08
	η	8.1	0.6	0.3

Gamma Inefficiency Function

CsI, Veto, BHPV Photonuclear from Exp.Data Veto : sampling calo. MC simu. BHPV: beam test and MC



Charged Inefficiency Function

CV: PSI measurements with a photon calorimeter behind.

• Inconsistency due to the small size of a calorimeter used in the PSI measurements.

BHCV : 0.5% by masking effect due to high counting rate

Recycle events of interest

Multi-stage MC production for halo-neutron backgrounds and Ke3 (conversion type) For example, CC02 backgrounds

Halo n \rightarrow Hit at CC02 Produce $\pi 0$ Veto $\rightarrow 2\gamma$ in CsI $\rightarrow \pi 0$ reconstruction

CC02 hitCC02 x pi0pord x veto 50% 10^{-3} $10^{-5} \rightarrow 10^{8}$ gain CV-eta hitCV x eta prod x 2ybranch x veto 10% 10^{-6} 0.4 $1\% \rightarrow 10^9$ gain CV- π 0: hitCV x π 0prod x veto 10% 10^{-4} 1% \rightarrow 10^{7} gain Ke3 : hitCV x π^{-} ineff. x e+ ineff. x reconstruction $4\% \ge 10^{-4} \ge 10^{-4} \ge 30\% \rightarrow 10^{10}$ gain \rightarrow 2-3 days to treat 10 times E14 halo neutrons

Fast-Full Simulation

Use full simulation at CsI response and at haloneutron interaction

Merit:

Shower can be treated easily.

- Cluster shape cut
- Inefficiency v.s. Collateral cluster
- Backsplash loss (They are not independent.)

Extra particles at neutron interactions

Demerit:

Weight can't used \rightarrow Need large statistics to treat rate event topologies.

Anyway, we are getting more realistic information around cluster shape cut

Future plan

Speed up

Shower library for inefficient gammas in $CsI \rightarrow It$ enables weight method to treat rare event topologies.

Complete detector design and construct detector. Calibration method for inefficiency function in data acquisition.

Step2: 100 times higher statistics

Still affordable if these methods are validated.

→~1 month for generation incl. Moor's law.