2pi0 fusion background reduction by cluster shape

6 Mar. 2008

fusion background

Fusion event is one of major background sources in E14 experiment. This event takes place in $K_{L} \rightarrow 2\pi^{0} \rightarrow 4\gamma$

shower shape map

fusion clusters include 2γ and their shapes are different from clusters made by single γ

simulate average cluster shape of single gamma by MC and record them

(shower shape map)

factors deciding cluster shape

there are various factors that change shape of

 1γ cluster.

•Energy (E) changes shower length

 \cdot incident angle(θ) changes inclination

of shower.

 \cdot azimutial angle (Φ) along beam axis,

position(x, y) of
center of cluster in
a crystal changes
energy distribution.

★ divide E, θ , Φ , x and y to some intervals and prepare a shower shape map for each intervals

summary

·made **shower shape maps** which record average shapes of clusters made by various 1 γ

 separated fusion background events by comparing with shower shape maps

•estimated #fusion/#signal = 0.26±0.01(signal 4.16 event, fusion 1.08 event)

back up

fusion事象数の見積もり fusion事象はどの程度問題になるだろうか? ⇒geant4によるシミュレーション (簡単のためCslカロリメータは全て2.5cm角の結晶で構成) •2rの入射位置が10cm以内のものをfusion事象と見なし クラスターをシミュレーション

veto & kinematic cutをかけた状態で残った事象数は...

	signal	fusion	fusion/signal
事象数	4.63±0.02	6.3±0.1	1.36±0.02

⇒veto検出器以外のcutが必要

csi photon veto

Einc>100MeVのクラスター以外に Edep>20MeVのクラスターはない

クラスタリング

1.5MeV以上のエネルギー を持つ結晶のうち、互いの距 離が2.5cm x √8のものをま とめる

E, θ, Φ のマップ区間分け log(x) 6 5.8 ・Eは対数の変化が log(Energy)[MeV] 5.6 一定になるように 5.4 100~2000MeVを 5.2 E₆ E7 Es Eo 5 20binに 4.8 4.6

入射角θは2.5~42.5度を2度刻みで20bin
方位角Φは0~45度を7.5度刻みで6bin

4.4

100

150

200

250

300

350

Energy [MeV]

400

列エネルギー比のマップ区間分け

q_xの値は最大のエネルギーの列 に対するシャワーの発生位置に よって変わる →q_xの値から発生位置が見積も れる

シャワーの発生地点のxは

 γ をCsl結晶に一様に入射させたときに得られる分布 $f(q_x)$ を用いて

列エネルギー比

シャワーの発生地点のx座標が 変わるとq_xも変化し 1本分動くともとの値に戻る

→列エネルギー比は エネルギー最大の列に対する シャワーの発生位置を あらわす量

列エネルギー比qx、qyをビン分けしてマップを用意

fusion function

現行のfusion事象の見積もりは電磁シャワーをシミュレー ションせず、fusionをおこした2ァの入射位置の距離でcut で切る確率を決めている

irannsuraido

新 し い map の 作 成

★アのエネルギーE・入射角θ・方位角Φ および結晶中でのシャワーの発生位置を いくつかの区間にわけ、 その区間毎にmapを用意する

新しいマップを使って χ^2 cutを改善しよう

現行の χ^2 Cut 2rが重なる分clusterは歪むはず ⇒E14実験ではfusion eventをclusterの形から判別する **x²Cut** が準備されている **x²cut**とは ・事前に1rの作るクラスターをシミュレーション ・エネルギー重心のあるCslを中心とした 7x7本に落とされるエネルギーの平均値とRMSを記録 (shower shape map) $\chi^2 = \sum_{7 \times 7CsI} \frac{(E_i - Emean_i)^2}{Erms_i^2} / 49$

fusion事象の見積も

