

Takashi NAKANO

(RCNP, Osaka University)

Outline

- Introduction: What is the Θ^+ ?
- Why is it interesting?
- What do we know about it?
- How is it seen at LEPS?
- What is the possible nature of the Θ^+ ?
- What is the next step?

NP08@Mito, March 6th, 2008.

What are pentaquarks?

- Baryon.
- Minimum quark content is 5 quarks. $(qqqq\overline{Q})$
- "Exotic" penta-quarks are those where the antiquark has a different flavor than the other 4 quarks
- Quantum numbers cannot be defined by 3 quarks alone.

 Θ^+ : uudds

Baryon number = 1/3 + 1/3 + 1/3 + 1/3 - 1/3 = 1

Strangeness = 0 + 0 + 0 + 0 + 1 = 1

e.g. uuddc, uussd

c.f. $\Lambda(1405)$: uudsū or uds

Baryon masses in constituent quark model

 $m_u \sim m_d = 300 \sim 350 \text{ MeV}, m_s = m_{u(d)} + 130 \sim 180 \text{ MeV}$

- Mainly 3 quark baryons: M ~ 3m_q + (strangeness)+(symmetry)
- p, K, and h are light: Nambu-Goldstone bosons of spontaneously broken chiral symmetry.
- 5-quark baryons, naively: M ~ 5m_q + (strangeness) +(symmetry) 1700~1900 MeV for Θ⁺

Fall-apart decay problem

•DPP predicted the Θ^+ with M=1530MeV, Γ <15MeV, and J^p=1/2⁺.

- •Naïve QM (and many Lattice calc.) gives $M=1700\sim1900$ MeV with $J^p=1/2^-$.
- •But the negative parity state must have very wide width (~1 GeV) due to "fall apart" decay.

Experimental status

•Not seen in the most of the high energy experiments: The production rate of $\Theta^+/\Lambda(1520)$ is less than 1%.

•Not likely to an ordinary baryon.

•No published positive result from dedicated experiments CLAS $\gamma p \gamma d$, COSY-TOF pp, KEK-PS (π^-, K^-), (K⁺, π^+)

•The width must be less than 1 MeV. (DIANA and KEK-B)

•LEPS observed signals in γ n \rightarrow K⁺K⁻n and γ d \rightarrow A(1520)KN reactions, which could be inconsistent with CLAS γ d experiment (CLAS-g10).

t-channel photo-production of Θ^+

S. Nam et al. hep-ph/05005134

FIG. 4: Total (left) and differential (right) cross sections for $\Theta^+(1/2^+)$. The numbers on the figures denote the values of the coupling constant $g_{K^*N\Theta}$.

FIG. 3: Upper two panels: Total cross sections for $J^P = 3/2^+$ (left) and for $J^P = 3/2^-$ (right). Lower two panels: Differential cross sections for $J^P = 3/2^+$ (left) and for $J^P = 3/2^-$ (right). The numbers on the figures denote the values of the coupling constant $g_{K^*N\Theta}$.

Θ^+ production in (π^-, K^-) and (K⁺, π^+) reactions

Θ⁺ search at LEPS/SPring-8

- •Both reactions are quasi-free processes.
- •Fermi-motion effect should be corrected.

Minimum momentum for the spectator nucleon is used to select quasi-free processes and correct Fermi-motion broadening in the nK invariant mass estimation.

Minimum momentum dependence

 $|p_{\rm min}| < 50 \text{ MeV/c}$ $|p_{\rm min}| < 50 \text{ MeV/c}$ 45 Λ(1520) **Θ**⁺(1530 40 60 35 50 30 40 25 20 30 15 20 10 10 5 0 0 1.4 1.45 1.5 1.85 1.9 1.4 1.45 1.8 1.5 1.8 1.85 1.9 1.55 1.65 1.7 1.751.55 1.65 1.7 1.75 $MpK^{-}(GeV/c^{2})$ MnK^+ (GeV/c²)

 \rightarrow Strong indication of the quasi-free processes.

Statistical Significance

•Spectrum is fitted with a Gaussian + linear BG function with an estimated mass resolution (11 MeV/ c^2).

•Significance is estimated by dividing the Gaussian peak height by its uncertainty. Estimated significance is ~5.

Θ^+ Cross-section

•Flat angle distribution and no energy dependence were assumed.

•Preliminary analysis gave $d\sigma/d\Omega \sim 0.01 \ \mu b/sr$, about 10 % of the $\Lambda(1520)$ production cross-section by assuming a constant matrix element. \rightarrow Flat angular and energy dependence were assumed.

•More than one order of magnitude larger than CLASg10 upper limit of σ_{tot} ~3 nb (95%CL).

Can be consistent?

The reaction is the same: $\gamma n \rightarrow K^- \Theta^+$

LEPS

- Good forward angle coverage
- Poor wide angle coverage
- Low energy
- Symmetric acceptance for K^+ and $K^- \leftrightarrow$ Asymmetric acceptance
- M_{KK}≥1.04 GeV/c²
- Select quasi-free process

←→ Poor forward angle coverage

CLAS

- ←→ Good wide angle coverage
- ← Medium energy
- \leftrightarrow M_{KK} > 1.07 GeV/c²
- ← Require re-scattering or large
 Fermi momentum of a spectator
- LEPS: $\theta_{LAB} < 20$ degree $|t| < 0.6 \text{ GeV}^2$ CLAS: $\theta_{LAB} > 20$ degree Θ^+ might be a soft object.

KK invariant mass

•LEPS acceptance is larger for events with smaller KK invariant mass.

•Most of the events have KK invariant mass below 1.1 GeV.

Interference?

 $\boldsymbol{\phi}$ is produced in forward angles.

 ϕ production cross-section increases with E γ .

 γ couples to KK through VMD much stronger than EM.

 Θ^+ production amplitude is large when ϕ and K⁺ close to be real.

Kinematical region covered by LEPS

Next steps

- 1. Final result with optimized ϕ exclusion cut will be open soon.
- 2.New data set with 3 times more statistics has been already taken.
- 3. Blind analysis will be carried out to check the peak (in this year).
- 4. A new experiment with a Time Projection Chamber was started. \rightarrow wider angle coverage and Θ^+ reconstruction in pK_s decay mode.
- 5. If the peak is confirmed, we will submit a proposal to do a complete search for Θ^+ by using a low energy K⁺ beam at J-PARC.

The formation experiment will not be affected by a form factor.

Ultimate answer may be given at J-PARC