NP08, 6 Mar. 2008 @ Mito

Pentaquark Study with Low Momentum K⁺ Beam at J-PARC

> Norihito Muramatsu RCNP, Osaka University

Θ^+ formation experiment at J-PARC

- Resonance formation reaction: $K^+n \rightarrow \Theta^+ \rightarrow K_S{}^0p \rightarrow \pi^+\pi^-p$ $P(K^+)=417 (442) \text{ MeV/c}$ for M(Θ^+)=1.53 (1.54) GeV/c² K0.8 beamline is necessary.
- π^+ , π^- , & proton detection by large acceptance spectrometer $M(\pi^+\pi^-)$: K_S^0 reconstruction $M(K_S^0p)$: Θ^+ reconstruction Independent from Fermi motion \downarrow
 - Objectives of ⊕⁺ search at J-PARC Possible experimental setups

Objectives of Θ^+ search at J-PARC

- Θ⁺ has not been established yet although LEPS data suggests it.
 ⇒ Direct confirmation of Θ⁺ existence
- Photo- and hadro-production may be affected by reaction mechanism. ex. No K* exchange in t-channel is supported by target isospin asymmetry in γN→KΘ⁺ and No observation of K⁺p → π⁺Θ⁺
 ⇒ Independent from reaction mechanism
- Width/spin/parity have not been determined.
 ⇒ Width can be measured from cross section.

$$\sigma = \frac{\pi}{8k^2} (2J + 1) \int \frac{\Gamma^2}{(E - M)^2 + \Gamma^2 / 4} dE$$

⇒ Spin measurement by decay angular distribution 1 for 1/2, 1+3cos² θ for 3/2, 1-2cos² θ +5cos⁴ θ for 5/2 Possibility to interfere with BG : odd power of cosine

K⁺n Scattering Experiments

Belle K⁺ is 'reconstructed' from the reaction D^{*-} \rightarrow D⁰ π^{-} \rightarrow (K⁺ π^{-}) π^{-}

Need a modern experiment with high intensity K⁺ beam at J-PARC

K0.8 (Sharing w/ stopped K⁺ exp.)

K0.8 (Sharing w/ stopped K⁺ exp.)

- K/ π separation by Cherenkov detectors
 - Fitch-type Cherenkov (like E949)
 - AC utilizing K/ π momentum difference
 - \Rightarrow Compact beamline elements

(cτ=3.713 m for K⁺)

Nuclear interactions at BeO can be omitted by detecting multi-particles at Beam Wire chamber.

Possible Detector Setups

• Pions from K_S^0 : Side spectrometer is enough.

Momentum range is relatively low.

- Protons : Need forward detection.
 - Inactive target with forward spectrometer
 - Active target with kinetic energy measurement

Inactive Target & Large Acceptance Spectrometer

Good Points

- Proton momentum resolution is much better than kinetic energy measurement at active target. Energy loss around target is smaller.
 Consequently, Θ⁺ mass resolution would be better.
- Charged particles are detected by large acceptance spectrometer.
- Smaller dE/dx correction (~5 MeV/c in P) and less nuclear interactions for decay products are expected at target.
 Bad Points
- Adjustments of K⁺ beam momentum would be necessary in order to produce Θ^+ . M(K⁺n) is distributed with σ ~25 MeV/c².
- Low momentum proton cannot fly into spectrometer volume.

Liquid Deuteron Target

- expected dimension
 - diameter : ~10 cm
 - length : ~10 cm or more
 - volume : ~1000 cc
 - = extension of LEPS liquid target for TPC (by Maeda & Hotta)
 ~100 μm Kapton target cell
 ~1 mm CFRP vacuum chamber
- Smaller energy straggling effect in momentum measurement GEANT3 simulation with 200 MeV/c pion in 90 degree
 - LD2 + Kapton cell + CFRP + start counter (5 mm) : 0.4%
 - active target (plastic scint.) : 0.7%

LEPS liquid target for TPC

Time Projection Chamber

- Endplate material can be reduced.
 - ⇒ Better momentum resolution in forward direction
- PID by dE/dx is available.
 (Note momenta of charged products are less than 0.6 GeV/c.)
- Dead time may be problematic for high trigger rate.
 - Comment by Yosoi drift time in 1 m TPC : 20 μs front-end processing : 10 μs ~1 kHz will be acceptable by assuming 10% dead time.

We can reduce K⁺ beam intensity with better quality by taking into account cross section.

Expected Θ^+ **Mass Resolution**

Active Target & Side Spectrometer [like E949]

Good Points

- K⁺ travels inside a target until momentum becomes appropriate to produce Θ^+ .
- Proton is emitted in forward directions, and tends to stop inside the target.
- Kinetic energy and polar angle measurements of proton.
- Mometum correction for pions. Bad Points : Worse Θ^+ Mass Resolution

Spectrometer Considerations

- Shorter Cylindrical drift chamber is enough to detect pions in side directions. Good acceptance coverage in wide K_S⁰ polar angle region even with a 1 m-long DC.
- PID by TOF would be enough. (See right figure: green R=50 cm, red R=90 cm in case of charged particles are emitted at 90°. ∆t=50 psec is assumed.)
- Mass resolution assuming BNL-E949 detector resolutions. Invariant mass of $\pi\pi p$: 7.6 MeV/c² ($\Delta P/P=1.4\%$ at P=200-300 MeV/c,

 Δ E/E=8.3% at E_{KIN}=100 MeV, proton angle mes. error = 6°) Kinematic fit (using correlation with K_s⁰ mass) : 6.2 MeV/c²

Expected Yield

• Simple calculation assuming 3.10⁴ K⁺/spill

 $Y = \rho \cdot I \cdot \sigma \cdot N_A \cdot F_K \cdot f_n = 1.032 \text{ g/cm}^3 \cdot 25 \text{ cm} \cdot 10^{-27} \text{ cm}^2 \cdot$

 $6.022 \cdot 10^{23} \cdot 3 \cdot 10^4$ /spill \cdot (6/13) = 200 /mb/spill for active target

 $Y = 0.169 \text{ g/cm}^3 \cdot 10 \text{ cm} \cdot 10^{-27} \text{ cm}^2 \cdot 6.022 \cdot 10^{23} \cdot 3 \cdot 10^4 \text{ /spill} \cdot (1/2)$

- = 15 /mb/spill for LD_2 target
- In reality, K⁺ beam lose momentum inside target, and produce Θ^+ when its momentum gets appropriate.
 - \Rightarrow effective target length would be much smaller.
- This yield will be reduced by detector acceptance, nuclear interactions, and so on.

 $\sigma_{BW}(E) = \pi/(4k^2) \cdot \Gamma^2/[(E-M)^2 + \Gamma^2/4]$ for spin1/2

 \Rightarrow 26.4 \cdot Γ mb/MeV

- K⁻p→Λ(1520)→Λπ⁺π⁻ for various checks including cross section. (It is worth to do even if K⁻ intensity is a bit lower.) Γ(Λ*)=15.6 MeV ⇒ order of 100 mb
- Main BG contribution comes from CEX (K⁺n→K_s⁰p). total cross section ~7 mb [PRD15(1977)1846]

Summary

- Existence of Θ⁺ should be directly confirmed in K⁺n resonance reaction at J-PARC by using ~420 MeV/c high intensity K⁺ beam !
- Expected Θ^+ mass resolution is ~3 MeV/c² with inactive target + large acceptance spectrometer.
- Measurements of width & spin are possible.