Is It Still Possible That the Θ⁺ Pentaquark Exists?

K. Hicks, Ohio U. NP08 Workshop (J-PARC) March 6, 2008

Outline

- I will <u>not</u> review +/- experiments...
- Theory: is it still possible?
- Experiment: is it reproducible?
- What can be done at J-PARC.

Lattice Calculations

 Many lattice calculations were done for the spin-parity ¹/₂⁺ and ¹/₂⁻.

- Virtually all agree: no pentaquark signal.

- Two lattice calculations done for J=3/2.
 - Most advanced is Lasscock, hep-lat/0504015.
 - Lattice signature: binding increases for lower pion mass—seen for all known baryons.
 - Study was redone with higher lattice statistics.

Lattice Results

Negative parity Positive parity 4.54.5NK* I(JP)=0(1/2-) NK* I(JP)=0(1/2*) NK* I(J^p)=0(3/2⁻) NK* I(J^p)=0(3/2+) 4.0NK I(J^p)=0(1/2⁻) 4.0NK $I(J^p)=0(1/2^+)$ 0 0 S-wave N+K ve N+K Δ Δ S-wave N+K* N*+K × P-wave N+K* 3.5 3.5 (GeV)(GeV)3.0 3.0 N N 2.5 2.5 ķ 2.0 2.0 1.51.50.2 0.2 0.60.8 0.0 0.60.8 0.0 0.40.4 m_2^2 (GeV²) m_{π}^{2} (GeV²) Scattering states and NK states 3/2+ shows characteristic have the same mass dependence. signature of resonance behaviour.

Large N_c Limit

- Investigations at large N_c show whether such a state could exist in pQCD.
 - In the real world, $N_c = 3$, so $1/N_c$ expansion is not always reliable.
- In this limit, a bound <u>heavy quark</u> "pentaquark-like" state exists.
 - Ref: Cohen, Hohler, Lebed (hep-ph/0508199).
 - Is the s-quark heavy enough? Is $N_c=3$ "big"?

Large N_c Results

Binding energies of heavy "pentaquarks" at large N_c . Potentials: A (V_0 =-60 MeV, r_0 =1 fm), B (quadratic potential), C (V_0 =-276 MeV, r_0 =1 fm).

	Channel			Ι	Α		В		С		
	J	\mathbf{S}	Р		+	_	+	_	+	_ ←	Relative sign
	$\frac{1}{2}$	$\frac{1}{2}$	_	0	1.30	1.35	3.89	1.92, 3.62	139.38, 142.14	_	of g_A and g_H .
				1	_	_	0.35	0.27	_	139.38, 140.76	
	$\frac{1}{2}$	$\frac{1}{2}$	+	0	_	_	_	_	14.9, 32.39	4, 19.32, 46.5	
				1	_	_	_	_	$12.72,\ 18.22,\ 26.91$	9.45	
	$\frac{1}{2}$	$\frac{3}{2}$	_	0	1.30	1.31	3.89	3.67	140.76	140.76	
				1	_	_	_	0.26	140.76	140.76	
	$\frac{1}{2}$	$\frac{3}{2}$	+	0	_	_	_	_	32.15	3.35, 45.95	
				1	_	_	_	_	12.12, 27.19	8.36, 22.08	
	$\frac{3}{2}$	$\frac{1}{2}$	_	0	1.42	1.31	3.89	3.67	140.76	140.76	
				1	_	_	_	0.26	140.76	140.76	
I=0, J ^P =3/2 ⁺	$\frac{3}{2}$	$\frac{1}{2}$	+	0	_	-	_	-	$15.32,\ 18.49,\ 32.43$	4.65	
				1	_	—	—	—	12.80	17.25, 17.66, 22.91	
	$\frac{3}{2}$	$\frac{3}{2}$	_	0	1.42	1.25	3.89	3.67	140.76	140.76	
				1	_	_	_	0.20	140.76	140.76	
	$\frac{3}{2}$	$\frac{3}{2}$	+	0	_	_	_	_	18.22, 32.29	-	
				1	_	_	_	-	4.18, 23.18	-	

K. Hicks, Ohio U.

Effective Lagrangian Model

Nam, Hosaka, Kim, hep-ph/0505134.

Effective Models: Results

The contact term is responsible for large differences between the proton and neutron targets. For J=3/2, the cross section is at small angles.

J^P	3/2	+	3/2	—	$1/2^+$		
$g_{KN\Theta}$	0.5	3	4.2	2	1.0		
$g_{K^*N\Theta}$	$\pm 0.$	91	± 2	2	± 1.73		
Target	n	p	n	p	n	p	
σ	$\sim 25~{\rm nb}$	$\sim 1~{\rm nb}$	$\sim 200~{\rm nb}$	$\sim 4~\rm{nb}$	$\sim 1~{\rm nb}$	$\sim 1~{\rm nb}$	
$\frac{d\sigma}{d\cos\theta}$	Forward	$\sim 60^{\circ}$	Forward	_	$\sim 45^{\circ}$	$\sim 45^{\circ}$	

Conclusion: the CLAS null result for the proton target is consistent with this calculation and hence does not rule out the existence of the Θ^+ .

NP08 Workshop

Soft Formation Model

0.0

U

20

 $\theta_{vA^*}(degrees)$

40

In this model, with an almost-on-shell Kaon, the cross section is very forward peaked.

60

Suppressed Kinematics

Experimental Situation

- There are many null results.
 - No Θ^+ from e⁺e⁻ or high energy collisions.
 - 3 positive cases repeated, all null results.
- Only 2-3 results still appear viable:
 - -LEPS $\gamma d \rightarrow K^+ K^- X$ (forward angle).
 - CLAS $\gamma p \rightarrow \pi^+ K^- K^+ n$ (π^+ goes forward).
 - DIANA bubble chamber data (reproduced?)

Exclusion Regions for Θ +

Width

KEK experiment

Miwa et al., The E559 Collaboration arXiv:0712.3839.

Backward angles not detected in this experiment.

Lack of signal means either:

- 1) Θ^+ does not exist
- 2) K* coupling is very small.

Upper limit is 3.5 μ b/sr (2°-22°), much small than theory estimate.

CLAS proton experiment

The s- and u-channel diagrams are suppressed, and no contact diagram.

t-channel

If the coupling vertex $N\Theta^+K^*$ is small, then this could explain why the (first) CLAS proton experiment gives a null result.

The second CLAS proton experiment ($\gamma p \rightarrow \pi^+ K^- \Theta^+$) is still allowed.

If the Θ^+ exists:

- Then you must believe that it:
 - Has soft form factor (near on-shell formation)
 - Has a small decay branch from high-mass N*
 - Has a small width (small overlap of w.f.)
 - Is only produced at forward angles
 - Has a small coupling to K* meson
- This is a long list of requirements.
 Caveat Emptor!

J-PARC proposal

If the K* coupling is small, then the s-channel process should dominate. Here, the intermediate state must be a N_5 (non-strange pentaquark) to avoid OZI suppression.

Summary

- Theory suggests that it is still possible that a Θ⁺ pentaquark exists with J^P=3/2⁺.
 - If so, then production only at forward angles.
- Experiments suggest that only a small kinematic window is available to the Θ^+ .
 - The LEPS experiment is in this window.
 - A "formation" experiment is still needed.
- J-PARC will be able to either confirm the Θ^+ or close the door on its existence.