# Dimuon Measurement with Polarized Beam at J-PARC 

NP08 in Mito<br>March 6 th, 2008<br>Yuji Goto (RIKEN/RBRC)

## Outline

- Origin of the nucleon spin $1 / 2$
- introduction
- history
- Drell-Yan measurement
- unpolarized measurement $\rightarrow$ polarized measurement
- quark spin, gluon spin, and orbital angular momentum of quark and gluon
- Iongitudinal and transverse spin measurements
- Polarized proton acceleration at J-PARC


## J-PARC proposals

- P04: measurement of high-mass dimuon production at the $50-\mathrm{GeV}$ proton synchrotron
- spokespersons: Jen-Chieh Peng (UIUC) and Shinya Sawadas (KEK)
- collaboration: Abilene Christian Univ., ANL, Duke Univ., KEK, UIUC, LANL, Pusan National Univ., RIKEN, Seoul National Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.
- including polarized physics program, but not seriously discussed
- "deferred"
- P24: polarized proton acceleration at J-PARC
- contact persons: Yuji Goto (RIKEN) and Hikaru Sato (KEK)
- collaboration: ANL, BNL, UIUC, KEK, Kyoto Univ., LANL, RCNP, RIKEN, RBRC, Rikkyo Univ., TokyoTech, Tokyo Univ. of Science, Yamagata Univ.
- polarized Drell-Yan included as a physics case
- "no decision"
- Next proposal for the polarized physics program
- to be submitted


## Origin of the nucleon spin 1/2?

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L
$$

- EMC experiment at CERN J. Ashman et al., NPB 328, 1 (1989).
- total quark spin constitutes a small fraction of the nucleon spin $\Delta \Sigma=12 \pm 9$ (stat) $\pm 14$ (syst)\% "proton spin crisis"
- integration in $\mathrm{x}=0 \sim 1$ makes uncertainty
- more data to cover wider x region with more precise data necessary
- SLAC/CERN/DESY/JLAB experiments $\Delta \Sigma \sim 20 \%$
- Gluon spin contribution? longitudinally polarized measurements
- scaling violation in polarized DIS
- success of the evolution equation of the perturbative QCD
- limited sensitivity due to a limited range of Q $^{2}$
- semi-inclusive polarized DIS
- polarized hadron collision

$$
A_{L L}=\frac{d \sigma_{++}-d \sigma_{+-}}{d \sigma_{++}+d \sigma_{+-}}
$$

- Orbital angular momentum?
transversely polarized measurements


## Gluon spin contribution

- $A_{L L}$ in neutral pion production
- mid-rapidity at RHIC, $\sqrt{ } s=200 \mathrm{GeV}$
$A_{L L}=\left[\omega_{g g} \Delta \Delta g \Delta g+\left[\omega_{g q} \Delta q\right] \Delta g+\left[\omega_{q q} \Delta q \Delta q\right]\right.$


$\mathrm{gg}+\mathrm{qg}$ dominant sensitive to the gluon reaction


GRSV-std scenario, $\Delta G=0.4$ at $Q^{2}=1(\mathrm{GeV} / \mathrm{c})^{2}$, excluded by data on more than 3 -sigma level

## Flavor-sorted quark polarization

- Weak boson production
- RHIC spin
- $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$
- 2009 -
- parity-violating asymmetry $A_{L}$
$A_{L}^{W^{+}}=\frac{\Delta u\left(x_{a}\right) \bar{d}\left(x_{b}\right)-\Delta \bar{d}\left(x_{a}\right) u\left(x_{b}\right)}{u\left(x_{a}\right) \bar{d}\left(x_{b}\right)+\bar{d}\left(x_{a}\right) u\left(x_{b}\right)}$
- reduction of uncertainties to determine the quak spin contribution $\Delta \Sigma$ and gluon spin contribution $\Delta \mathrm{G}$ to the proton spin



## Transverse single-spin asymmetry (SSA)

- Link to orbital angular momentum in the nucleon
- forward rapidity
- Fermilab E704, $\sqrt{ } \mathrm{s}=20 \mathrm{GeV}$
- RHIC, $\sqrt{s}=200 \mathrm{GeV}$


explained by many undetermined distribution and fragmentation functions: transversity, Sivers function, Collins function
March 6, 2008 NP08 in Mito


## Drell-Yan experiment

- The simplest process in hadron-hadron reactions


Drell-Yan


- no QCD tinal-state effect
- no polarized Drell-Yan experiment done yet
- flavor asymmetry of the sea-quark distributions
- unpolarized and longitudinally-polarized measurements
- orbital angular momentum in the nucleon
- Sivers effect (no Collins effect)
- transversity distribution function, etc.
- Why at J-PARC ?
- polarized beam feasible in discussions with J-PARC and BNL accelerator physicists
- high intensity/luminosity for small Drell-Yan cross section


## Flavor asymmetry of sea-quark distribution

- Fermilab E866
- Possible origins
- meson-cloud model
- virtual meson-baryon state

$$
p \rightarrow p \pi^{0}, n \pi^{+}, \Delta \pi
$$

- chiral quark model

- instanton model
- chiral quark soliton model
- Is $\pi^{+}$the origin of $\bar{d}$-quark excess in the proton?

$$
\frac{\sigma^{p d}}{2 \sigma^{p p}} \sim \frac{1}{2}\left[1+\frac{\bar{d}\left(x_{2}\right)}{\bar{u}\left(x_{2}\right)}\right]_{1.2}
$$

## Polarized Drell-Yan experiment at J-PARC

- Longitudinally-polarized measurement
- $A_{L L}$ measurement
- flavor asymmetry of sea-quark polarization



120-day run
$75 \%$ polarization for a $5 \times 10^{11}$ protons/spill polarized solid NH3 target, $75 \%$ hydrogen polarization and 0.15 dilution factor

## Flavor asymmetry of sea-quark polarization

- Polarized Drell-Yan experiment at J-PARC

$$
-x=0.25-0.5
$$

- $\mathrm{W}^{ \pm}$production at RHIC
$-x=0.05-0.1$


reduction of uncertainties to determine the quak spin contribution $\Delta \Sigma$ and gluon spin contribution $\Delta \mathrm{G}$ to the proton spin


## Polarized Drell-Yan experiment at J-PARC

- Orbital angular momentum
- in hadron-hadron reaction, no direct link between measurement and theory (yet)
- but, any partonic transverse motion and correlation should be related
- Sivers effect / higher-twist effect
- SSA $\left(A_{N}\right)$ measurement
- Sivers effect and higher-twist effect provide the same description of SSA on Drell-Yan and semi-inclusive DIS at moderate $q_{T}: \Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q$
- Sivers function in Drell-Yan should have a sign opposite to that in DIS
- sensitive QCD test between e+p data and $p+p$ data


1000 fb-1 (120-day run), 75\% polarization, no dilution factor Theory calculation by Ji, Qiu, Vogelsang and Yuan based on Sivers function fit of HERMES data

## Polarized Drell-Yan experiment at J-PARC

- $A_{T T}$ measurement
- $h_{1}(x)$ : transversity

$$
\begin{aligned}
& A_{T T}=\hat{a}_{T T} \cdot \frac{\sum_{q} e_{q}^{2}\left(\bar{h}_{1 q}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)}{\sum_{q} e_{q}^{2}\left(\bar{f}_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)} \\
& \hat{a}_{T T}=\frac{\sin ^{2} \theta \cos \left(2 \phi-\phi_{S_{1}}-\phi_{S_{2}}\right)}{1+\cos ^{2} \theta}
\end{aligned}
$$

- remaining leading-order $A_{T T}=\hat{a}_{T T}$ distribution function of the nucleon
- SSA measurement, $\sin \left(\phi+\phi_{\mathrm{S}}\right)$ term
- $\mathrm{h}_{1}(\mathrm{x})$ : transversity
$-h_{1}{ }^{\perp(1)}(x)$ : Boer-Mulders function ( $1^{\text {st }}$ moment of)

$$
\hat{A}=-\frac{1}{2} \frac{\sum_{q} e_{q}^{2}\left(\bar{h}_{1 q}^{\perp(1)}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)}{\sum_{q} e_{q}^{2}\left(\bar{f}_{1 q}\left(x_{1}\right) f_{1 q}\left(x_{2}\right)+(1 \leftrightarrow 2)\right)}
$$

## Polarized proton acceleration at AGS/RHIC

- Proposed scheme for the polarized proton acceleration at J-PARC is based on the successful experience of accelerating polarized protons to 25 GeV at BNL AGS


Spin Rotators


March 6, 2008
NP08 in Mito

## Polarized proton acceleration at J-PARC



## Accelerating polarized protons in the MR

- AGS $25 \%$ superconducting helical snake

correction solenoid and dipoles



## Accelerating polarized protons in the MR

- Possible location of partial helical snake magnets in the MR



## Summary

- Polarized Drell-Yan experiment with dimuon measurment using polarized proton beam at JPARC has a rich physics programs
- flavor asymmetry of sea-quark polarization $\rightarrow$ higher precision for $\Delta \Sigma$ and $\Delta G$
- SSA measurements for Sivers and higher-twist effects and transversity $\rightarrow$ link to orbital-angular momentum
- We propose to make the J-PARC facility allow acceleration of polarized proton beams to 30-50 GeV
- feasible in discussion with J-PARC and BNL accelerator physicists
- technically, there is no showstopper


## Backup slides

## Gluon spin contribution

- PHENIX $A_{L L}$ of $\pi^{0}$
- GRSV-std scenario, $\Delta G=$ 0.4 at $Q^{2}=1(\mathrm{GeV} / \mathrm{c})^{2}$, excluded by data on more than 3-sigma level, $\chi^{2}(\mathrm{std})-\chi_{\text {min }}^{2}>9$
- only experimental statistical uncertainties included (the effect of systematic uncertainties expected to be small in the final results)
- theoretical uncertainties not included

Calc. by W.Vogelsang and M.Stratmann


## Distribution and fragmentation functions

- Transversity distribution function

$$
\delta q(x)=h_{1 T}(x)
$$



- distribution of the transverse-spin of a parton inside the transversely polarized proton
- Sivers distribution function

$$
f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)
$$



- correlation between the transverse-spin of the proton and the transverse-momentum of an unpolarized parton inside the proton $\left(p_{T}^{2}\right)$
- Collins fragmentation function

$$
H_{1}^{\perp}\left(z, k_{T}^{2}\right)
$$



- correlation between the transverse spin of a fragmenting quark and the transverse momentum of the outgoing hadron relative to the quark $\left(k_{T}{ }^{2}\right)$


## Dimuon experiment at J-PARC (P04)

- based on the Fermilab spectrometer for 800 GeV
- length to be reduced but the aperture to be increased
- two vertically bending magnets with $p_{T}$ kick of $2.5 \mathrm{GeV} / \mathrm{c}$ and $0.5 \mathrm{GeV} / \mathrm{c}$
- tracking by three stations of MWPC and drift chambers
- muon id and tracking



## Dimuon experiment at J-PARC (P04)

- Unpolarized measurement
- with proton and deuterium targets




## Unpolarized Drell-Yan experiment at J-PARC

- Boer-Mulders function $\mathrm{h}_{1}{ }^{\perp}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}{ }^{2}\right)$
- angular distribution of unpolarized Drell-Yan

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

- Lam-Tung relation reflect the spin-1/2 nature of quarks
- violation of the Lam-Tung relation suggests non $1-\lambda=2 v$
- violation of the Lam-Tung relation suggests nonperturbative origin
$v \neq 0,1-\lambda \neq 2 v$
- correlation between transverse quark spin and quark transverse momentum



## Physics at 30 GeV

- J/ $\psi$
- gluon fusion or quark-pair annihilation
- quark-pair annihilation dominant
- must be confirmed experimentally...
- similar physics topics as Drell-Yan process


March 6, 2008


NP08 in Mito


25

## Physics at 30 GeV



- collider energies: gluonfusion dominant
- sensitive to gluon Sivers effect
- fixed-target energies: quarkpair annihilation dominant
- sinsitive to quark Sivers



## Polarized proton acceleration

- How to keep the polarization given by the polarized proton source
- depolarizing resonance
- imperfection resonance
- magnet errors and misalignments
- intrinsic resonance
- vertical focusing field
- weaken the resonance
- fast tune jump
- harmonic orbit correction
- intensify the resonance and flip the spin
- rf dipole
- snake magnet
- How to monitor the polarization
- polarimeters


## Modes of operation

- Operation mode of the J-PARC MR should be:
- 50 GeV maximum energy
$-10^{12}$ proton/spill $\left(\sim 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$ luminosity with a $\sim 5 \%$ interation target)
- 8 bunches
- $2 \times 10^{11}$ proton/bunch at RCS
-0.5 s spill length (working assumption)
- 80\% polarization
- $10 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ normalized $95 \%$ emittance and 0.3 eVs longitudinal emittance


## High-intensity polarized $\mathrm{H}^{-}$source

- OPPIS parameters required:
- 0.16 mA peak $\mathrm{H}^{-}$ion current in $500 \mu \mathrm{sec}$ pulse
- $5 \times 10^{11} \mathrm{H}^{-}$ion/pulse
-50 Hz repetition rate
- $1.0 \pi \mathrm{~mm} \cdot \mathrm{mrad}$ normalized emittance
- 35 keV beam energy
- 85\% polarization


## High-intensity polarized H- source

## - RHIC OPPIS

- built at KEK and upgraded at TRIUMF
- 0.5-1.0 mA (max. 1.6 mA ) $\mathrm{H}^{-}$ ion current in $400 \mu \mathrm{sec}$ pulse
- 1.2-2.4×10 ${ }^{12} \mathrm{H}^{-}$ion/pulse
-7 Hz max. repetition rate

- 1 Hz routine repetitior
- 82-85\% polarization



## High-intensity polarized ${ }^{-}$- source

- Issues
- where to locate the polarized $\mathrm{H}^{-}$source
- how to merge the polarized beam to the existing beam line
- may require RFQ
- maintenance of the laser system


## From source to RCS

- Polarimeter
- at the end of the linac
- proton-Carbon inclusive polarimeter similar to that at BNL
- Stripping foil
- 300-500 $\mu \mathrm{g} / \mathrm{cm}^{2}$ stripping foil for injection to RCS
- need to be replaced by $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ foil to have better dp/p


## Accelerating polarized protons in the RCS

- Kinetic energy from 0.18 GeV to 3 GeV
$-\mathrm{G} \gamma=2.2 \sim 7.5$
- betatron tune $v_{y}=6.35$



## Accelerating polarized protons in the RCS

- 5 imperfection resonances
- $\mathrm{G} \gamma=3,4,5,6,7$
- corrected by harmonic orbit correction
- 4 intrinsic resonances
- betatron tune $v_{y}=6.35$
- $\mathrm{G} \gamma=2.65\left(9-v_{\mathrm{y}}\right), 3.35\left(-3+v_{y}\right), 5.65\left(12-v_{y}\right), 6.35\left(0+v_{y}\right)$
- first small resonance is corrected by fast tune jump
- latter three strong resonances are completely (> 99\%) spinflipped by a rf dipole
- 20 Gm vertical rf dipole
- smaller size of beam (comparing to 7 cm painting beam) required: operational issue


## Accelerating polarized protons in the RCS

- Issues
- where to locate the rf dipole
- design of the rf dipole
- beam monitor system to cover a wide dynamic range between high-intensity unpolarized beam ( $4 \times 10^{13} /$ bunch) and polarized beam ( $1.5 \times 10^{11} /$ bunch )
- position monitor necessary to calculate the magnetic field error and correct it by the harmonic orbit correction
- spin tracking to be done


## Accelerating polarized protons in the MR

- Kinetic energy from 3 GeV to 50 GeV
$-\mathrm{G} \gamma=7.5 \sim 97.5$
- betatron tune $v_{x}=22.339, v_{y}=20.270$



## Accelerating polarized protons in the MR

- Two superconducting 30\% partial helical Siberian snakes separated by 120 degree installed in two of the three straight sections:
- avoid all vertical depolarizing resonances
- Two quadrupole doublets
- to compensate perturbation of the lattice by the snakes at low eneraies

full spin flip at all imperfection and strong intrinsic resonances using partial Siberian snake and rf dipole at AGS


## Accelerating polarized protons in the MR

- Spin tracking
$-v_{x}=22.128, v_{y}=20.960$
- average of 12 particles on an ellipse of $8 \pi \mathrm{~mm}$ mrad J_PARC MR - 2 snakes, $\mu=54: 54 \rightarrow 45: 45$



## Primary beam extraction

- No serious issues
- Issues
- operational issues
- tune change for the extraction
- vertical bend of the beam line
- beam profile monitor system for the stability of beam intensity, position, and spot size to provide a systematical control of the experimental data quality
- spin rotator magnet necessary to manipulate a direction of beam polarization


## Proton-carbon elastic-scattering polarimeter

- Requirements
- known analyzing power $\mathrm{A}_{\mathrm{N}}$
- small systematic error
- quick measurement (~1 min)
- AGS/RHIC pC CNI polarimeter
- elastic scattering in the coulomb-nuclear interference region
- micro-ribbon carbon target in the circulating beam
- detecting recoil carbon nucleus
- arrival time from time-zero to Si sensors


## Proton-carbon elastic-scattering polarimeter

- Proton-carbon CNI polarimeter at J-PARC
- no time-zero information
- coincidence measurement between the recoiled carbons and the forward going protons with the extracted beam
- economical solution which provides a quick turnaround to optimize machine parameters to achieve maximum polarization


## Absolute polarimeter

- Proton-proton and proton-carbon elastic scattering at 31.2 GeV of the RHIC beam
- measured analyzing power data at 31.2 GeV of the RHIC beam
- available for calibration of absolute polarimeter of the main ring (gas jet) and/or extracted beam (solid target)


## Cost for polarized proton acceleration

- Rough estimation based on the cost at BNL
- 200 million yen high-intensity polarized $\mathrm{H}^{-}$source
- OPPIS / RFQ / polarimeter
- 50 million yen from source to RCS
- proton-carbon inclusive polarimeter / stripping foil upgrade
- 100 million yen acceleration at RCS
- rf dipole magnet / beam monitor system upgrade
- 500 million yen acceleration at MR
- two superconducting $30 \%$ partial helical Siberian snakes / two quadrupole doublets
- 250 million yen primary beam extraction
- beam profile monitor system / spin rotators
- 100 million yen proton-carbon CNI polarimeter
- 100-300 million yen absolute polarimeter
- gas jet in the main ring and/or solid target with the extracted beam
- Total 1,300-1,500 million yen


## Polarized target

- Michigan polarized target
- existing at KEK
- target thickness ~3 cm (1\% target)
- maybe operational with $10^{11}$ ppp (luminosity $\sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ )


