Spin-Orbit Correlations

Matthias Burkardt
burkardt@nmsu.edu
New Mexico State University
Las Cruces, NM, 88003, U.S.A.

Outline

- GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right)$
$\hookrightarrow \perp$ deformation of unpol. PDFs in \perp pol. target
- physics: orbital motion of the quarks
\hookrightarrow intuitive explanation for SSAs (Sivers)
- $\bar{E}_{T}=2 \tilde{H}_{T}+E_{T}$
$\longrightarrow \perp$ deformation of \perp pol. PDFs in unpol. target
- correlation between quark angular momentum and quark transversity
\hookrightarrow Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$
- Are all Boer-Mulders functions alike?
- Summary

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) \quad \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)

Generalized Parton Distributions (GPDs)

- formal definition (unpol. quarks):

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle & =H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
+ & E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p)
\end{aligned}
$$

- in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x) .
$$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}+x^{-}}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, \xi, t)$	$?$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, 0, t)$	$q\left(x, \mathbf{b}_{\perp}\right)$

$q\left(x, \mathbf{b}_{\perp}\right)=$ impact parameter dependent PDF

Impact parameter dependent PDFs

- define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{aligned}
$$

Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$:

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x^{-} i \Delta_{y}}^{2 M}}{2 M}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from j^{3} ! [X.Ji, PRL 91, 062001 (2003)]

Intuitive connection with \vec{L}_{q}

- DIS probes quark momentum density in the infinite momentum frame (IMF). Quark density in IMF corresponds to $j^{+}=j^{0}+j^{3}$ component in rest frame ($\vec{p}_{\gamma^{*}}$ in $-\hat{z}$ direction)
$\hookrightarrow j^{+}$larger than j^{0} when quarks move towards the γ^{*}; suppressed when they move away from γ^{*}
\hookrightarrow For quarks with positive orbital angular momentum in \hat{x}-direction, j^{z} is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

\hookrightarrow not surprising that $E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)$ enters Ji relation!

$$
\left\langle J_{q}^{i}\right\rangle=S^{i} \int d x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right] x .
$$

Transversely Deformed PDFs and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons !
- mean \perp deformation of flavor q (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

with $\kappa_{u / d}^{p} \equiv F_{2}^{u / d}(0)=\mathcal{O}(1-2) \quad \Rightarrow \quad d_{y}^{q}=\mathcal{O}(0.2 f m)$

- simple model: for simplicity, make ansatz where $E_{q} \propto H_{q}$

$$
\begin{aligned}
& E_{u}\left(x, 0,-\Delta_{\perp}^{2}\right)=\frac{\kappa_{u}^{p}}{2} H_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) \\
& E_{d}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)=\kappa_{d}^{p} H_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

with $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033$.

- Model too simple but illustrates that anticipated deformation is very significant since κ_{u} and κ_{d} known to be large!

SSAs in SIDIS $\left(\gamma+p \uparrow \longrightarrow \pi^{+}+X\right)$

- use factorization (high energies) to express momentum distribution of outgoing π^{+}as convolution of
- momentum distribution of quarks in nucleon
\hookrightarrow unintegrated parton density $f_{q / p}\left(x, \mathbf{k}_{\perp}\right)$
- momentum distribution of π^{+}in jet created by leading quark q
\hookrightarrow fragmentation function $D_{q}^{\pi^{+}}\left(z, \mathbf{p}_{\perp}\right)$
- average \perp momentum of pions obtained as sum of
- average k_{\perp} of quarks in nucleon (Sivers effect)
- average \mathbf{p}_{\perp} of pions in quark-jet (Collins effect)

GPD \longleftrightarrow SSA (Sivers)

- Sivers: distribution of unpol. quarks in \perp pol. proton

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S}{M}
$$

- without FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle=0$, i.e. $f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)=0$
- with FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- FSI formally included by appropriate choice of Wilson line gauge links in gauge invariant def. of $f_{q / p}\left(x, \mathbf{k}_{\perp}\right)$

\perp Single Spin Asymmetry (Sivers)

- Why interesting?
- \perp asymmetry involves nucleon helicity flip
- quark density chirally even (no quark helicity flip)
\hookrightarrow 'helicity mismatch' requires orbital angular momentum (OAM)
\hookrightarrow (like κ), Sivers requires matrix elements between wave function components that differ by one unit of OAM (Brodsky, Diehl, ..)
- Sivers requires nontrivial final state interaction phases
\hookrightarrow sensitive to space-time structure of hadrons

\perp Single Spin Asymmetry (Sivers)

- Naively (time-reversal invariance) $f\left(x, \mathbf{k}_{\perp}\right)=f\left(x,-\mathbf{k}_{\perp}\right)$
- However, including the final state interaction (FSI) results in nonzero asymmetry of the ejected quark! (Brodsky, Hwang, Schmidt)
- Gauge invariant definition requires quark to be connected by gauge link. Choice of path not arbitrary but must be chosen along path of outgoing quark to incorporate FSI

$$
\begin{aligned}
& \left.f\left(x, \mathbf{k}_{\perp}\right) \propto \int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{q}(0) U_{[0, \infty]} \gamma^{+} U_{[\infty, \xi]} q(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& \quad \text { with } U_{[0, \infty]}=P \exp \left(i g \int_{0}^{\infty} d \eta^{-} A^{+}(\eta)\right)
\end{aligned}
$$

- Wilson line phase embodies the FSI from the spectators on the active quark

$f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{D Y}=-f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)_{S I D I S}$

a)

b)

- time reversal: FSI \leftrightarrow ISI

SIDIS: compare FSI for 'red' q that is being knocked out with ISI for an anti-red \bar{q} that is about to annihilate that bound q
\hookrightarrow FSI for knocked out q is attractive
DY: nucleon is color singlet \rightarrow when to-be-annihilated q is 'red', the spectators must be anti-red
\hookrightarrow ISI with spectators is repulsive

\perp Single-Spin Asymmetry (Sivers)

- treat FSI to lowest order in g

$$
\left\langle k_{q}^{i}\right\rangle=-\frac{g}{4 p^{+}} \int \frac{d^{2} \mathbf{b}_{\perp}}{2 \pi} \frac{b^{i}}{\left|\mathbf{b}_{\perp}\right|^{2}}\langle p, s| \bar{q}(0) \gamma^{+} \frac{\lambda_{a}}{2} q(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)|p, s\rangle
$$

with $\rho_{a}\left(\mathbf{b}_{\perp}\right)=\int d r^{-} \rho_{a}\left(r^{-}, \mathbf{b}_{\perp}\right)$ summed over all quarks and gluons
\hookrightarrow SSA related to dipole moment of density-density correlations

- GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow+\hat{y}$ and $d \longrightarrow-\hat{y}$
\hookrightarrow expect density density correlation to show same asymmetry $\left\langle b^{y} \bar{u}(0) \gamma^{+} \frac{\lambda_{a}}{2} u(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)\right\rangle>0$
\hookrightarrow sign of SSA opposite to sign of distortion in position space

GPD \longleftrightarrow SSA (Sivers)

- example: $\gamma p \rightarrow \pi X$

- u, d distributions in \perp polarized proton have left-right asymmetry in
\perp position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
-

attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q}^{p} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$

- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by Hermes results (also consistent with Compass $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$)

GPD \longleftrightarrow SSA (Sivers)

- $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$ also consistent with sum rule

$$
\int d x \sum_{i \in q, g} f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}\right) \mathbf{k}_{\perp}^{2}=0
$$

- non-trivial sum rule, not a trivial consequence of momentum conservation (cf. Schäfer Teryaev sum rule for fragmentation) as it does not involve a summation over the whole final state, but only over active partons

Chirally Odd GPDs

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x p^{+} x^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \sigma^{+j} \gamma_{5} q\left(\frac{x^{-}}{2}\right)|p\rangle= & H_{T} \bar{u} \sigma^{+j} \gamma_{5} u+\tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u \\
& +E_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} \gamma_{\beta}}{2 M} u+\tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} P_{\alpha} \gamma_{\beta}}{M} u
\end{aligned}
$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $\bar{E}_{T}^{q} \equiv 2 \tilde{H}_{T}^{q}+E_{T}^{q}$ for $\xi=0$ describes distribution of transversity for unpolarized target in \perp plane

$$
q^{i}\left(x, \mathbf{b}_{\perp}\right)=\frac{\varepsilon^{i j}}{2 M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}} \bar{E}_{T}^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)
$$

- origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target

Boer-Mulders Function

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
\hookrightarrow e.g. quarks at negative b_{x} with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
\hookrightarrow (qualitative) connection between Boer-Mulders function $h_{\frac{1}{\perp}}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the chirally odd GPD \bar{E}_{T} that is similar to (qualitative) connection between Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the GPD E.
- Boer-Mulders: distribution of \perp pol. quarks in unpol. proton

$$
f_{q^{\uparrow} / p}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{2}\left[f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S_{q}}{M}\right]
$$

- $h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)$ can be probed in DY (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

probing BM function in tagged SIDIS

- consider semi-inclusive pion production off unpolarized target
- spin-orbit correlations in target wave function provide correlation between (primordial) quark transversity and impact parameter
\hookrightarrow (attractive) FSI provides correlation between quark spin and \perp quark momentum $\Rightarrow \mathrm{BM}$ function
- Collins effect: left-right asymmetry of π distribution in fragmentation of \perp polarized quark \Rightarrow 'tag' quark spin
$\hookrightarrow \cos (2 \phi)$ modulation of π distribution relative to lepton scattering plane
$\hookrightarrow \cos (2 \phi)$ asymmetry proportional to: Collins $\times \mathrm{BM}$

probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution
$\longrightarrow \perp$ quark pol.

polarization and γ^{*} absorption

- QED: when the γ^{*} scatters off \perp polarized quark, the \perp polarization gets modified
- gets reduced in size
- gets tilted symmetrically w.r.t. normal of the scattering plane
quark pol. before γ^{*} absorption
quark pol. after γ^{*} absorption
lepton scattering plane

probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution
$\longrightarrow \perp$ quark pol.

probing BM function in tagged SIDIS

Quark Transversity Distribution after γ^{*} absorption

quark transversity component in lepton scattering plane flips

probing BM function in tagged SIDIS

\perp momentum due to FSI

$\longrightarrow \perp$ quark pol.

on average, FSI deflects quarks towards the center

Collins effect

- When a \perp polarized struck quark fragments, the strucure of jet is sensitive to polarization of quark
- distribution of hadrons relative to \perp polarization direction may be left-right asymmetric
- asymmetry parameterized by Collins fragmentation function
- Artru model:
- struck quark forms pion with \bar{q} from $q \bar{q}$ pair with ${ }^{3} P_{0}$ 'vacuum' quantum numbers
\hookrightarrow pion 'inherits' OAM in direction of \perp spin of struck quark
\hookrightarrow produced pion preferentially moves to left when looking into direction of motion of fragmenting quark with spin up
- Artru model confirmed by Hermes experiment
- more precise determination of Collins function under way (Belle)

probing BM function in tagged SIDIS

SSA of π in jet emanating from \perp pol. q

probing BM function in tagged SIDIS

\hookrightarrow in this example, enhancement of pions with \perp momenta \perp to lepton plane

probing BM function in tagged SIDIS

\hookrightarrow expect enhancement of pions with \perp momenta \perp to lepton plane

Chirally Odd GPDs (sign)

- LC-wave function representation: matrix element for \bar{E}_{T} involves quark helicity flip
\hookrightarrow interference between wave function components that differ by one unit of OAM (e.g. s-p interference)
\hookrightarrow sign of \bar{E}_{T} depends on rel. sign between s \& p components
- bag model: p-wave from lower component

$$
\Psi_{m}=\binom{i f \chi_{m}}{-g(\vec{\sigma} \cdot \overrightarrow{\vec{x}}) \chi_{m}}
$$

(relative sign from free Dirac equation $g=\frac{1}{E} \frac{d}{d r} f$)

- $\bar{E}_{T} \propto-f \cdot g$. Ground state wave function: f peaked at $r=0 \Rightarrow$ $\bar{E}_{T}>0$
- more general potential model: $\frac{1}{E} \rightarrow \frac{1}{E-V_{0}(r)+m+V_{S}(r)}$
\hookrightarrow sign of \bar{E}_{T} same as in Bag model!

Chirally Odd GPDs: sign (M.B. + Brian Hannafious)

- relativistic constituent model: spin structure from SU(6) wave functions plus "Melosh rotation"
$\hookrightarrow \bar{E}_{T}>0$ (B.Pasquini et al.)
- origin of sign: "Melosh rotation" is free Lorentz boost
\hookrightarrow relative sign between upper and lower component same as for free Dirac eq. (bag)
- diquark models: nucleon structure from perturbative splitting of spin $\frac{1}{2}$ 'nucleon' into quark \& scalar/a-vector diquark: $\bar{E}_{T}>0$
- origin of sign: interaction between q and diquark is point-like
\hookrightarrow except when q \& diquark at same point, q is noninteracting
\hookrightarrow relative sign between upper and lower component same as for free Dirac eq. (bag)
- NJL model (pion): $\bar{E}_{T}>0$ origin of sign: NJL model also has contact interaction!
- lattice QCD (u, d in nucleon; pion): $\bar{E}_{T}>0$ (P.Hägler et al.)

Chirally Odd GPDs (magnitude)

- large $N_{C}: \bar{E}_{T}^{u}=\bar{E}_{T}^{d}$
- Bag model/potential models: correlation between quark orbit and quark spin same for all quark states (regardless whether $j_{z}=+\frac{1}{2}$ or $j_{z}=-\frac{1}{2}$)
\hookrightarrow all quark orbits contribute coherently to $\overline{E_{T}}$
- compare E (anomalous magnetic moment), where quark orbits with $j_{z}=+\frac{1}{2}$ and $j_{z}=-\frac{1}{2}$ contribute with opposite sign
$\hookrightarrow E$, which describes correlation between quark OAM and nucleon spin smaller than \bar{E}_{T}, which describes correlation between quark OAM and quark spin: $\bar{E}_{T}>|E|$
- potential models: $\bar{E}_{T} \propto \#$ of $q \quad \Rightarrow \quad \bar{E}_{T}^{u}=2 \bar{E}_{T}^{d}$
$\hookrightarrow \operatorname{expect} 2 \bar{E}_{T}^{d}>\bar{E}_{T}^{u}>\bar{E}_{T}^{d}$
- all of the above confirmed in LGT calcs. (e.g. P.Hägler et al.)

IPDs on the lattice (Hägler et al.)

- lowest moment of distribution of unpol. quarks in \perp pol. proton (left) and of \perp pol. quarks in unpol. proton (right):

Transversity decomposition of J_{q}

- $J^{i}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} x\left[T^{0 j} x^{k}-T^{0 k} x^{j}\right]$
- J_{q}^{x} diagonal in transversity, projected with $\frac{1}{2}\left(1 \pm \gamma^{x} \gamma_{5}\right)$, i.e. one can decompose

$$
J_{q}^{x}=J_{q,+\hat{x}}^{x}+J_{q,-\hat{x}}^{x}
$$

where $J_{q, \pm \hat{x}}^{x}$ is the contribution (to J_{q}^{x}) from quarks with positive (negative) transversity
\hookrightarrow derive relation quantifying the correlation between \perp quark spin and angular momentum [M.B., PRD72, 094020 (2006); PLB639, 462 (2006)]

$$
\left\langle J_{q,+\hat{y}}^{y}\right\rangle=\frac{1}{4} \int d x\left[H_{T}^{q}(x, 0,0)+\bar{E}_{T}^{q}(x, 0,0)\right] x
$$

(note: this relation is not a decomposition of J_{q} into transversity and orbital)

Summary

- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
\hookrightarrow origin for deformation: orbital motion of the quarks
\hookrightarrow simple mechanism (attractive FSI) to predict sign of $f_{1 T}^{q}$

$$
f_{1 T}^{u}<0 \quad f_{1 T}^{d}>0
$$

- distribution of \perp polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_{T}^{q}=2 \bar{H}_{T}^{q}+E_{T}^{q}$
\hookrightarrow origin: correlation between orbital motion and spin of the quarks
\hookrightarrow attractive $\mathrm{FSI} \Rightarrow$ measurement of h_{1}^{\perp} (DY,SIDIS) provides information on \bar{E}_{T}^{q} and hence on spin-orbit correlations
- expect:

$$
h_{1}^{\perp, q}<0 \quad\left|h_{1}^{\perp, q}\right|>\left|f_{1 T}^{q}\right|
$$

\perp Single Spin Asymmetry (Sivers)

- Naively (time-reversal invariance) $f\left(x, \mathbf{k}_{\perp}\right)=f\left(x,-\mathbf{k}_{\perp}\right)$
- However, including the final state interaction (FSI) results in nonzero asymmetry of the ejected quark! (Brodsky, Hwang, Schmidt)
- Gauge invariant definition requires quark to be connected by gauge link. Choice of path not arbitrary but must be chosen along path of outgoing quark to incorporate FSI

$$
\begin{aligned}
& \left.f\left(x, \mathbf{k}_{\perp}\right) \propto \int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{q}(0) U_{[0, \infty]} \gamma^{+} U_{[\infty, \xi]} q(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& \quad \text { with } U_{[0, \infty]}=P \exp \left(i g \int_{0}^{\infty} d \eta^{-} A^{+}(\eta)\right)
\end{aligned}
$$

Sivers Mechanism in $A^{+}=0$ gauge

- Gauge link along light-cone trivial in light-cone gauge

$$
U_{[0, \infty]}=P \exp \left(i g \int_{0}^{\infty} d \eta^{-} A^{+}(\eta)\right)=1
$$

\hookrightarrow Puzzle: Sivers asymmetry seems to vanish in LC gauge (time-reversal invariance)!

- X.Ji: fully gauge invariant definition for $P\left(x, \mathbf{k}_{\perp}\right)$ requires additional gauge link at $x^{-}=\infty$

$$
\begin{aligned}
f\left(x, \mathbf{k}_{\perp}\right) & =\int \frac{d y^{-} d^{2} \mathbf{y}_{\perp}}{16 \pi^{3}} e^{-i x p^{+} y^{-}+i \mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}} \\
& \times\langle p, s| \bar{q}(y) \gamma^{+} U_{\left[y^{-}, \mathbf{y}_{\perp} ; \infty^{-}, \mathbf{y}_{\perp}\right]} U_{\left[\infty^{-}, \mathbf{y}_{\perp}, \infty^{-}, \mathbf{0}_{\perp}\right]} U_{\left[\infty^{-}, \mathbf{0}_{\perp} ; 0^{-}, \mathbf{0}_{\perp}\right]} q(0)|p, s\rangle
\end{aligned}
$$

